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In this paper we propose an optimized version, at the end-points, of the Akima’s
interpolation method for experimental data fitting. Comparing with the Akima’s procedure,
the error estimate, in terms of the modulus of continuity, is improved. Similarly, we
optimize at the end points the Catmull–Rom’s cubic spline. The properties of the obtained
splines are illustrated on a numerical experiment.
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1. Introduction

In the problem of smooth curve fitting of experimental data, a remarkable result was obtained by Akima (1970). The
Akima’s interpolation method provides a natural and more suitable procedure for the smooth fitting of the data (xi, yi),
i = 0,n, with yi ∈ R, ∀i = 0,n, and xi , i = 0,n, being the knots of a grid, a = x0 < x1 < · · · < xn−1 < xn = b. This method is
based on the two-point Hermite’s interpolation cubic polynomial

s(x) = (xi − x)2[2(x − xi−1) + hi]
h3

i

· yi−1 + (x − xi−1)
2[2(xi − x) + hi]

h3
i

· yi

+ (xi − x)2(x − xi−1)

h2
i

· mi−1 − (x − xi−1)
2(xi − x)

h2
i

· mi, x ∈ [xi−1, xi], i = 1,n (1)

where hi = xi − xi−1, i = 1,n, and in the case that yi = f (xi), i = 0,n, are the values of a function f ∈ C1[a,b] on the given
knots, the values mi , i = 0,n, stands for the derivatives f ′(xi). When the values f ′(xi) of the derivatives are known, in
the previous formula (1) we can put, mi = f ′(xi), i = 0,n, but elsewhere the values mi , i = 0,n, have to be determined. In
the Akima’s method, these values are computed using a local procedure based on geometric reasons. More exactly, for five
given points Mi(xi, yi), i = 1,5, are computed the slopes pi = yi+1−yi

xi+1−xi
, i = 1,4, and then, starting from a proportion that

uses some of the obtained segments, is suggested the following value for the tangent in the point M2(x2, y2):

m2 = |p4 − p3| · p2 + |p2 − p1| · p3

|p4 − p3| + |p2 − p1| . (2)

✩ This paper has been recommended for acceptance by T. Lyche.

* Fax: +40 0259 408 461.
E-mail address: abica@uoradea.ro.

http://dx.doi.org/10.1016/j.cagd.2014.03.001
0167-8396/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2014.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:abica@uoradea.ro
http://dx.doi.org/10.1016/j.cagd.2014.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2014.03.001&domain=pdf


246 A.M. Bica / Computer Aided Geometric Design 31 (2014) 245–257

This formula (2) is generalized considering the slopes pi = yi+1−yi
xi+1−xi

, i = 0,n − 1, together with the derivatives

mi = |pi+1 − pi| · pi−1 + |pi−1 − pi−2| · pi

|pi+1 − pi| + |pi−1 − pi−2| , i = 2,n − 2. (3)

In order to extend the formula (3) for i = 0,n, the previously computed slopes are not enough and therefore, Akima pro-
poses the construction of four new supplementary slopes p−1, p−2, pn , pn+1, based on a reasoning in the framework of
a particular case (equidistant grid and exactness for second order polynomials on the end intervals [x0, x1] and [xn−1, xn]):

p−1 = 2p0 − p1, p−2 = 3p0 − 2p1, pn = 2pn−1 − pn−2, pn+1 = 3pn−1 − 2pn−2. (4)

Since the artificial introduction of the four slopes well performs only in the particular case of equidistant grids, this is not a
strong point of the Akima’s method. For this reason we propose here an optimal procedure for the computation of the left
unspecified derivatives m0, m1, mn−1, mn (the other derivatives mi , i = 2,n − 2, are computed using (3)). In a recent work
(see Bica, 2012), we have defined a special functional, the quadratic oscillation in average (for this notion, see Bica, 2012),
and we have computed the values mi , i = 0,n, in order to minimize the quadratic oscillation in average.

Generally, for given points (xi, yi), i = 0,n, the formula (1) leads to a cubic spline s ∈ C1[a,b] for any values of mi ,
i = 0,n. There are proposed many procedures to estimate the values mi , i = 0,n. One of them is to require s ∈ C2[a,b] and
to impose two additional conditions, for instance natural end conditions s′′(a) = s′′(b) = 0 (see Ahlberg et al., 1967 and
Micula and Micula, 1999), obtaining a tridiagonal linear system for the unknown mi , i = 0,n, diagonally dominant, which is
exactly solved using an iterative algorithm (see Ahlberg et al., 1967, pages 14–15) and resulting the Hermite type natural
cubic spline. For the error in the approximation of the differences | f ′(xi) − mi |, i = 0,n, for this natural cubic spline (and
for complete and periodic cubic splines s ∈ C2[a,b]) see Kershaw (1972).

For cubic splines s ∈ C1[a,b], there are some ways to compute empirically the values mi , i = 0,n. One of the simplest
procedure is to consider the three-point finite difference

mi = yi+1 − yi

2(xi+1 − xi)
+ yi − yi−1

2(xi − xi−1)
, i = 1,n − 1

and one-sided difference for the end-points, m0 = y1−y0
x1−x0

, mn = yn−yn−1
xn−xn−1

. Another ways generated by geometric reasons lead

to the Kochanek–Bartels splines (see Knott, 2000 and Kochanek and Bartels, 1984) characterized by three control parameters
(tension, bias, and continuity), and to cardinal splines with mi = (1 − c) · yi+1−yi−1

xi+1−xi−1
, i = 1,n − 1, and c ∈ [0,1] be a tension

parameter. Two remarkable particular cases of cardinal splines are the following: the Catmull–Rom spline (for c = 0) and
the cubic spline with zero tangents (when c = 1, the maximal value of the tension parameter). In Reimer (1984), the best
error bound is obtained in terms of the modulus of continuity for periodic cardinal splines. In Ichida et al. (1976), for the
case of experimental data yi , i = 0,n, affected by measurement errors, both the values yi , i = 0,n, and mi , i = 0,n, are
computed by the use of an algorithm of least squares fitting minimizing an appropriate residual.

Another way to compute the values mi , i = 0,n, in the Hermite type cubic splines, is to require the preservation of some
graphic properties (see Burmeister et al. (1985) for convex splines with minimal L2-norm of the second derivative, Wolberg
and Alfy (2002) for monotonic splines with minimal curvature-type strain energy of the curve, Dietze and Schmidt (1988) for
shape-preserving cubic splines with minimal curvature, and Conti et al. (1996) for shape preserving C1-Hermite type cubic
splines), or to impose the minimization of some functionals like geometric curvature (see Burmeister et al., 1985; Dietze
and Schmidt, 1988; Micula and Micula, 1999), or like energy-type curvature (see Wolberg and Alfy, 2002), or minimizing
the L2-norms of all spline derivatives s(r) , r = 0,1,2,3 (see Kobza, 2002). In Yong and Cheng (2004), optimized geometric
Hermite curves with minimum strain energy is constructed (both in R

2 and R
3), starting from the optimal property of

Hermite curves obtained in Zhang et al. (2001).
For Hermite-type cubic splines s ∈ C2[a,b], the smoothness conditions lead to the n − 1 equations:

1

hi
· mi−1 + 2

(
1

hi
+ 1

hi+1

)
· mi + 1

hi+1
· mi+1 = 3(yi − yi−1)

h2
i

+ 3(yi+1 − yi)

h2
i+1

, i = 1,n − 1 (5)

and for a complete determination of the values mi , i = 0,n, two additional end conditions are needed. These can be: the
well-known Holladay’s natural end conditions s′′(a) = s′′(b) = 0 (see Ahlberg et al., 1967 and Micula and Micula, 1999);
clamped-end conditions s′(a) = f ′(a), s′(b) = f ′(b), when the values f ′(a) and f ′(b) are known (see Kershaw, 1972); the
classical De Boor’s not-a-knot end conditions (see Micula and Micula, 1999), or the end conditions proposed by Behforooz
and Papamichael, (1979b, 1980) that generates the E(α) cubic splines (see Behforooz and Papamichael, 1979a, 1979b, 1980;
Behforooz, 1995, and Papamichael and Worsey, 1981). It is proved in Behforooz (1995), that E(2) cubic spline is exactly
the not-a-knot cubic spline and the best E(α) cubic spline is E(3) having superconvergence properties (see Behforooz and
Papamichael, 1979a, 1980, and Papamichael and Worsey, 1981).

In this paper, preserving the values mi , i = 2,n − 2, be given by the Akima’s procedure (3), we define the notion of
partial quadratic oscillation in average and uniquely determine the left four values m0, m1, mn−1, mn such that the partial
quadratic oscillation in average to be minimized on the end subintervals [x0, x2] and [xn−2, xn]. Since the degree of freedom
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