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a b s t r a c t

In this paper we describe the use of a novel representation, LR B-spline surfaces, and apply this
representation in the treatment of geographical data. These data sets are typically very large and LR B-
spline surfaces offer a compact representation of overall smooth data with local details. We briefly
describe the properties of the LR B-spline representation, and discuss the details of two approximation
methods adapted for LR B-splines: least squares approximation and multilevel B-spline approximation
(MBA). The described techniques are demonstrated on several examples of terrain data in the form of
point clouds.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Unprocessed terrain data often takes the form of huge amounts
of unstructured points. To make the data appropriate for use, the
data must be processed and represented in a more structured
format. Furthermore, the data size must be reduced with a
minimum loss of the information carried by the point cloud. We
will, in this section, look into different methods for processing sets
of scattered data before we concentrate on the topic of locally
refined splines and the use of this technique for terrain data. It is
assumed that the input data is already tiled such that the input
data is suitable for being represented by one raster or one surface.

The digital elevation model (DEM) is the most common format for
processed terrain data. DEM uses a raster format for storage. The
measured area is divided into uniformly spaced cells and the
elevation is represented by one point in each cell. This point is often
placed in the cell centre and existing height values are used to
estimate the elevation in this point. This procedure is referred to as
interpolation. DEM is in essence a regular format although the
elevation value is not necessarily defined in all cells. A continuous
surface is represented by a discrete set of points. To fetch the value of
a point not lying at a grid intersection leads to another height value
estimation. Thus, DEM is an approximate representation of the terrain
where the accuracy depends on the interpolation method and the
grid density. A globally smooth terrain is necessarily more accurately
represented than a terrain with high variation in shape.

A number of different methods have been applied to estimate
the elevation in grid cells. An overview can be found in [22]. Most
GIS systems offer the possibility of the inverse weighted inter-
polation method originally proposed by Shepard, see [34]. The
method is simple, but tends to create the artifact of flat spots at the
data points. Other methods include Kriging [25], natural neigh-
bour [2] and splines. Kriging is an advanced technique using a
Geo-statistical approach and is mostly relevant when the estima-
tion errors are of interest. Natural neighbour interpolation is
originally based on Voronoi tessellation and tends to give a more
smooth result than the inverse weighted interpolation. The term
‘spline’ in the context of raster interpolation refers to splines with
tension and regularized splines, see [22], which is different from
splines as piecewise polynomials. However, the variational
approach utilized in this context is related to one of the approx-
imation methods we will describe in Section 3. Raster interpola-
tion using splines can produce estimated values that are above or
below the given sample data. This may be a wanted feature, but is
less adequate if the sample points are close together and have
extreme differences in value.

The method of radial basis functions (RBF) is central in scattered
data interpolation and there is a choice of several types of basis
functions. Franke published a test on some types in [15]. The quality
of the interpolated surface varies considerably with the choice of basis
functions. Initially RBF was a global method which resulted in an
equation system of the samemagnitude as the number of data points,
but also local methods exist, see for instance [11]. A combination of
moving least squares (MLS), see [20] and RBF is presented in [26].

The main field for wavelets [4] and wavelet transforms is signal
processing, but it is also used for data compression and noise
reduction. The latter is achieved by keeping only those terms in
the wavelet decomposition which have a coefficient larger than a
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given threshold. Unser considers splines and spline wavelets for
signal and image processing in [35].

Subdivision surfaces are flexible tools for shape modelling [27],
but to little extent used for approximation of scattered data.
However, a few approaches can be found and Ref. [32] focuses
on the approximation of large data sets primarily for visualization.

Tensor-product spline surfaces (piecewise polynomials and
NURBS) are a well established representation in fields such as
computer aided design (CAD), where they are used primarily to
model smooth shapes. Their use has also previously been explored
in representing topographic data sets. For example, spline approx-
imations of data from the Shuttle Radar Topography Mission
(SRTM) have been used, particularly for the application of filling
data voids [9]. A spline surface representing a terrain can be used
to effectively generate rasters of different density on demand.

Both raster representations and tensor-product splines approx-
imate the original measured data and reproduces the terrain best
if it is globally smooth. Triangulated surfaces, on the other hand,
are able to interpolate unorganized data. For huge data sets, a data
reduction is nevertheless required. Thinning of the initial point
cloud and hierarchical triangulation [12] are relevant methods in
this context. A triangulated surface is appropriate for areas of high
variation and sharp features, but gives a less efficient mean of
storage for smooth areas. To get an indication on how a linear
representation such as a triangulation approximates a smooth
function compared to a higher order continuous representation,
we can look at the corresponding figures for splines. When
approximating a Ck-continuous function with a Cd-continuous
spline of degree d where dok the error term is Oðhdþ1Þ. h is the
size of the polynomial segments. So splitting all the polynomial
segments of the spline in two will typically reduce the error to 1=4
for the linear spline, while the error for the cubic spline will be
reduced to 1=16. Consequently, for the spline approximation of
smooth shapes increasing the polynomial degree has the potential
of representing the shape with less data.

For data which exhibits local detail, tensor-product spline
surfaces do not possess sufficient flexibility. Non-uniform refine-
ment is available, but it is global for each parameter direction
resulting in large amounts of data. This means that such repre-
sentations are limited to globally smooth data sets. Locally refined
spline surfaces have, in contrast to tensor-product spline surfaces,
the ability to represent local variations in shape without globally
increasing the data size of the surface. In the past decades, a
number of approaches to local refinement of splines have been
pursued, including hierarchical splines [13], truncated hierarchical
splines [17], T-splines [33] and LR B-splines [7]. In this paper, we
focus our attention on LR B-splines. We will describe the proper-
ties of LR B-splines and discuss two methods for approximation of
point clouds: least squares approximation with smoothing and
multilevel B-spline approximation (LR-MBA).

Section 2 presents the spline representation format with
emphasis on the LR B-spline surfaces, Section 3 focuses on
approximation methods, and the two methods are illustrated with
a number of examples in Section 4. Section 5 presents a conclusion
and some considerations about further work.

2. Spline representations

2.1. The polynomial spline representation

The spline format is a well established representation and
described by several authors, see for instance [8]. In the following,
we will present a short summary to show the context where LR B-
spline surfaces belong to. A spline curve is a piecewise polynomial
curve where the polynomial pieces are joined together at specified

values known as knots. The curve c(t) is expressed as
cðtÞ ¼ Pn

i ¼ 1 ciNi;θðtÞd where ci, i¼ 1…n are the spline coefficients,
n is the number of coefficients while Ni, i¼ 1…n are basis
functions or B-splines. The B-splines are piecewise polynomial
functions with joints at the knots. The curve has polynomial
degree d. It is parameterized on an interval tA ½θ1;θnþdþ1�. θ is
the knot vector, the vector of parameter values of the joints
between the polynomial pieces. For all entries in the knot vector
θirθiþ1. The curve will initially be Cd�1 continuous, but the
continuity may be reduced by allowing for multiple knots, i.e.
θi ¼ θiþ1.

The B-splines, Ni, have limited support, that is Ni is non-zero
only on the interval ½θi;θiþdþ1� The B-splines are non-negative,
linearly independent and add up to 1 for all t. This is denoted
partition of unity. The curve can be refined by adding new knots
and the polynomial degree of the curve can be increased without
changing the curve.

The B-splines are a stable basis for the spline space. For a spline
function, there exist constants which bound the function from
above and below by the spline coefficients. This result is indepen-
dent of the dimension of the spline space and the knot vector. In
[30], Quak establishes a relation between this result and the Riesz
basis in multi-resolution analysis in the context of spline wavelets.

A tensor-product spline surface is constructed by taking the tensor-
product between two spline curves, i.e. Sðu; vÞ ¼ Pn

i ¼ 1
Pm

j ¼ 1
ci;jNi;θðuÞd1Nj;γðvÞd2 where d1 and d2 are the polynomial degree in the
first and the second parameter direction, respectively, and θ and γ
are the two knot vectors. The surface is defined on the area
Ω¼ ½θ1;θnþd1 þ1� � ½γ1; γmþd2 þ1�. This construction gives a surface
possessing the same properties as the curve. The surface is defined on
a regular grid and knot insertion will lead to a global refinement of the
surface in one parameter direction. Local refinement is not possible.

The polynomial spline curves and surfaces can be extended
with a rational term to be able to represent algebraic curves and
surface such as circles, spheres and cylinders together with free
form curves and surfaces in a uniform way, see [28]. The curve
expression now becomes cðtÞ ¼ Pn

i ¼ 1 hiciNi;θðtÞd=
Pn

i ¼ 1 hiNi;θðtÞd
where hiAR are positive weights. The weights bring additional
flexibility to the construction, but are seldom used in approxima-
tion as that would lead to a non-linear optimization problem. In
our context, we will restrict ourselves to polynomial splines.

2.2. Locally refined splines with emphasis on LR B-spline surfaces

LR B-splines is a new approach for local refinement of spline
spaces published in 2013, see [7]. Other approaches addressing
this topic are hierarchical splines and T-splines. LR B-splines and
(truncated) hierarchical B-splines build a sequence of nested
spline spaces starting from a tensor product B-spline space. While
the spline space of hierarchical B-splines is spanned by uniform B-
splines at different levels of refinement, LR B-splines are based on
non-uniform B-splines and allow all refinements where a B-spline
is split. The splines space of hierarchical B-splines satisfying the
strong condition (the knot lines defines a T-mesh) is included in
the spline space spanned by LR B-splines over the T-mesh.
Truncated hierarchical B-splines introduce in the transition zone
between refinement levels special basis functions built from B-
splines of the finer levels to reduce the size of the support of the
basis functions. For LR B-splines successive refinement is per-
formed when necessary to ensure that all B-splines have minimal
support. To ensure positive partition of unity LR B-splines scale the
B-splines used if needed, while the construction of the special
basis functions of truncated B-splines is ensured by proper scaling
of the B-splines from which they are composed. While (truncated)
hierarchical B-splines are always linearly independent, linear
independence for LR B-splines is ensured by supervising the
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