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An orthonormal frame (f1, f2, f3) is rotation-minimizing with respect to fi if its angular
velocity ω satisfies ω · fi ≡ 0 — or, equivalently, the derivatives of f j and fk are both parallel
to fi . The Frenet frame (t,p,b) along a space curve is rotation-minimizing with respect to
the principal normal p, and in recent years adapted frames that are rotation-minimizing
with respect to the tangent t have attracted much interest. This study is concerned
with rotation-minimizing osculating frames (f,g,b) incorporating the binormal b, and
osculating-plane vectors f, g that have no rotation about b. These frame vectors may be
defined through a rotation of t, p by an angle equal to minus the integral of curvature
with respect to arc length. In aeronautical terms, the rotation-minimizing osculating frame
(RMOF) specifies yaw-free rigid-body motion along a curved path. For polynomial space
curves possessing rational Frenet frames, the existence of rational RMOFs is investigated,
and it is found that they must be of degree 7 at least. The RMOF is also employed to
construct a novel type of ruled surface, with the property that its tangent planes coincide
with the osculating planes of a given space curve, and its rulings exhibit the least possible
rate of rotation consistent with this constraint.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A general spatial motion of a rigid body is specified by describing its position and orientation as functions of time. A par-
ticular point of the body (e.g., the center of mass) is usually chosen to describe position. To describe orientation, the varia-
tion of an orthonormal frame (e1,e2,e3) embedded within the body may be specified. In general, position and orientation
vary independently, but in certain motion problems they may be correlated. This study is concerned with constrained spatial
motions, in which the instantaneous angular velocity of a rigid body is related to the geometry of its center-of-mass path.

The Frenet frame is the most familiar orthonormal frame on a space curve, comprising the tangent t, principal normal p,
and binormal b = t×p. When the Frenet frame is used to orient a body along a path, its angular velocity ω satisfies ω ·p ≡ 0
— i.e., it has no component in the principal normal direction. This means that the body exhibits no instantaneous rotation
about the principal normal vector p from point to point along the path.

In aerodynamics, an embedded frame is used (Cook, 1997) to characterize variations in the attitude of an aircraft, in
terms of roll, pitch, and yaw axes through its center of mass — the roll (or longitudinal) axis is aligned with the fuselage;
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the pitch (or lateral) axis is orthogonal to it, within the plane of the fuselage and wings; and the yaw (or vertical) axis is
orthogonal to that plane. Hence, pitch and yaw correspond to up/down and left/right motions of the aircraft nose, while roll
corresponds to a rotation about the fuselage.

A rigid body that maintains alignment with the Frenet frame on a given spatial path exhibits a pitch-free motion —
it has no instantaneous rotation about the principal normal p. For a given (smooth) path, it is also possible to construct
roll-free and yaw-free rigid-body motions, characterized by no instantaneous rotation about the tangent t and binormal b,
respectively.

Roll-free motion, with angular velocity satisfying ω · t ≡ 0, has recently enjoyed considerable attention. In this case, the
body has no instantaneous rotation about the tangent t from point to point along the path. Bishop (1975) first studied
adapted orthonormal frames (t,u,v) comprising the tangent t and normal-plane vectors u, v that have no instantaneous ro-
tation about t, in lieu of p, b. Klok (1986) described the vectors u, v as solutions to differential equations, and Guggenheimer
(1989) subsequently showed that these solutions amount to defining u, v by a normal-plane rotation of p, b through an
angle equal to minus the integral of the torsion with respect to arc length.

For polynomial or rational curves, this rotation-minimizing adapted frame (RMAF) is not, in general, a rational lo-
cus, and this fact has prompted many approximation schemes (Farouki and Han, 2003; Jüttler and Mäurer, 1999;
Wang et al., 2008). More recently, interest has emerged in identifying curves with rational rotation-minimizing frames
(RRMF curves), which must be Pythagorean-hodograph (PH) curves (Farouki, 2008), since only PH curves possess rational
unit tangents. The Euler–Rodrigues frame (ERF), a rational adapted frame defined on any PH curve, is a useful intermediary
in identifying RRMF curves (Choi and Han, 2002; Han, 2008). The simplest non-planar RRMF curves form a subset of the
PH quintics (Farouki et al., 2009a), characterized by the satisfaction of simple constraints on the curve coefficients (Farouki,
2010). Further details on the basic theory, properties, and applications of RRMF curves can be found in Barton et al. (2010),
Farouki et al. (2012), Farouki and Sakkalis (2010, 2012).

Among the spatial motions mentioned above, in which angular velocity is correlated with local path geometry, the
least-studied is the case of yaw-free motion satisfying ω · b ≡ 0. In yaw-free motion, the orientation of the body is specified
by a frame (f,g,b) that retains the binormal b, but the tangent and principal normal t, p are replaced by osculating-plane
vectors f, g that have no instantaneous rotation about b. It is shown below that the vectors f, g can be defined through an
osculating-plane rotation of t, p by an angle equal to minus the integral of the curvature with respect to arc length. We call
the frame (f,g,b) a rotation-minimizing osculating frame (RMOF).

The plan for the remainder of this paper is as follows. Section 2 describes the concept of rotation-minimizing frames on
curves, and briefly mentions how it can also be used to identify certain special curves on a smooth surface (geodesics, lines
of curvature, and asymptotic lines). Section 3 addresses the problem of rational rotation-minimizing frames — after briefly
reviewing rational RMAFs, a detailed analysis of rational RMOFs on cubic and quintic space curves with rational Frenet
frames is presented. Section 4 employs the RMOF to construct ruled surfaces interpolating a space curve, with tangent
planes matching the osculating planes of that curve, and derives some useful properties of such surfaces. Finally, Section 5
summarizes the key results of this study, and identifies some open problems.

2. Rotation-minimizing frames on curves

The parametric speed of a differentiable space curve r(ξ) is defined by

σ(ξ) = ∣∣r′(ξ)
∣∣ = ds/dξ,

where s is the cumulative arc length of r(ξ), measured from some fixed point. The curve r(ξ) is regular if its parametric
speed satisfies σ(ξ) �= 0 for all ξ . The variation of an orthonormal frame (e1(ξ),e2(ξ),e3(ξ)) defined along r(ξ) may be
specified by its angular velocity ω(ξ) through the relations

e′
1 = σω × e1, e′

2 = σω × e2, e′
3 = σω × e3. (1)

Since (e1,e2,e3) comprise a basis for R
3 we can write

ω = ω1e1 + ω2e2 + ω3e3, (2)

and hence the relations (1) become

e′
1 = σ(ω3e2 − ω2e3), e′

2 = σ(ω1e3 − ω3e1), e′
3 = σ(ω2e1 − ω1e2). (3)

For a given reference direction, specified by a unit vector field c(ξ) along r(ξ), one may characterize frames
(e1(ξ),e2(ξ),e3(ξ)) that are rotation-minimizing with respect to c(ξ) as follows.

Definition 1. The frame (e1,e2,e3) is rotation-minimizing with respect to c if its angular velocity ω has no component in
the direction of c, i.e., ω · c ≡ 0.

Now if the frame vector e1(ξ) is chosen as the reference direction, the rotation-minimizing frame (RMF) satisfies ω1 ≡ 0
in (2). Eqs. (3) then yield an alternative characterization, in terms of the derivatives of e2(ξ) and e3(ξ).
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