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a b s t r a c t

While object deformation has received a lot of attention in Computer Graphics in recent years, with several
good surveys that summarize the state-of-the-art in the field, a comparable comprehensive literature review is
still needed for the related problem of crack and fracture modeling. In this paper we present such a review,
with a special focus on the latest advances in this area, and a careful analysis of the open issues along with the
avenues for further research. With this survey, we hope to provide the community not only a fresh view of the
topic, but also an incentive to delve into and explore these unsolved problems further.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Physically plausible object deformation and fracture have been
of central importance in many fields, and particularly in Computer
Graphics since more than 25 years ago [1,2]. Different areas, such
as architecture and fabrication, usually require very precise simu-
lations, for which numerical models have been devised using a
combination of continuum mechanics, dynamics, differential geo-
metry, calculus and Computer Graphics, among others. As a body
can undergo many physical phenomena, fractures are essential to
the movie and video game industries because of the explosions or
shattering bodies required. In general, the phenomena we study in
this survey can be considered as ubiquitous, as can be observed in
almost every structure, from crystals to entire buildings.

In spite of its importance, the study of fractures is still a non-
closed problem, with several open issues to be dealt with, most of
which result from the many approximations and simplifications
introduced to simulate the intrinsic complexities of this phenom-
enon. Advances in this field would open new frontiers for
applications such as simulation and prototyping of fragile objects,
resistance assessment and model resilience studies.

There are a number of good reviews on deformable models in
Computer Graphics [1,3] as well as aging/weathering techniques [4]
that touch on the topic of fracture processes. However, we feel that a
deep review of the current state-of-the-art in crack and fracture
modeling techniques is missing. Thus, in this paper we aim to fill
this gap with a comprehensive review of the work done thus far,

and, to improve understanding and strengthen the relationships
among the different works carefully classifying them according to
several criteria.

2. Overview

After an introduction to the mathematical background needed
to understand the basic principles of object deformation and the
phenomenon of fracture (Section 3), we present our principal
classification of the different methods involved in the fracture
process:

� Physically based methods (Section 4), are those that follow a
simulation-based approach to compute the fracture opening,
propagation and appearance. Among these, we sub-classify the
state-of-the-art in the field into
○ Mass-spring models (Section 4.1), where the object is

approximated by a finite set of masses, pairwise joined by
springs, each with its own defining parameters.

○ Finite element methods (Section 4.2), that partition the
object into a set of disjoint elements (e.g., tetrahedrons)
joining at discrete points. When the problem is formulated
in terms of these points, then it is converted into a set of
simpler algebraic equations, which are then solved to
establish the behavior of the system.

○ Meshless methods (Section 4.3), where the model is
approximated with a set of unconnected calculation points
that are simulated. The value for any other point in the
model is obtained by interpolation.
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○ Other approaches (Section 4.4) cover those, which do not
fall into the previous categories, but rather follow physical
principles for their simulations of the fracture process.

� Geometry-based methods (Section 5), also known as proce-
dural methods, seek plausible patterns but are not interested in
a physically accurate phenomena description.

� Example-based methods (Section 6) try to mimic real-world
fractures by copying the behavior observed in real phenomena.
These methods, which build on both Computer Vision and
Computer Graphics techniques, usually extract parameters
from images and then apply these to generate a new fracture.

Finally, in our conclusions (Section 7), we present comparisons
and further classification schemes to ensure that the reader has a
comprehensive view of the most recent developments in this area.
This includes Table 2, which provides further details of the main
techniques reviewed in this survey. Some avenues for future
research are also outlined at the end.

3. Background

In this section we will briefly introduce the main physical
concepts behind generating and propagating fractures.

3.1. Stress and strain

In continuum mechanics, we define the physical quantities of
an object as a continuous function in space (and time). In general,
we define the rest shape of an undeformed object as the con-
nected subspace M � R3 [1,3,5]. Each point xAM has its own
properties defined at its coordinates x inside the object, called
material coordinates. When we deform the object, we apply forces
that move its x points to their new positions x0. With the old and
new positions we can define the displacement vector field on M as
uðxÞ ¼ x0 �x, which represents the positional differences between
the current point and rest positions. Refer to Fig. 1 for a graphical
representation.

We usually measure deformation in terms of the so-called
strain, which we often define as a normalized measure of the body
deformation. This measure represents the displacement between
particles in the body relative to a reference length. Basically, the
strain measures the local deviation of a given deformation from a
rigid-body deformation. As the deformation in different directions
might be different, the strain is generally expressed as a tensor.
In three dimensions, this tensor is of order 2. Given the field uðxÞ,
we can compute the elastic strain ε of a point at a given time,

simply by relating it to the gradient ∇u. Observe that ∇u is a 3�3
matrix of the derivatives ð∇uÞij ¼ ∂jui. In Computer Graphics the
strain is usually defined for small deformations as one of

εG ¼ 1
2
ð∇uþ½∇u�T þ½∇u�T∇uÞ

εC ¼
1
2
ð∇uþ½∇u�T Þ

The first one (i.e., εG) is called the Green-Lagrange's strain tensor
and εC the Cauchy strain tensor, is its linearized counterpart.

Based on the strain tensor, we can compute the stress tensor
σAR3�3, which provides information about the forces acting on a
point when the body is deformed. Of course, this relationship
strongly depends on the properties of the material, and can be
quite complex. In Computer Graphics it is customary to use Hook's
law:

σ ¼ E � ε
where E is a rank 4 tensor which relates both tensors σ and ε in a
linear way, which is useful for small deformations. On the other
hand, other definitions of stress are required for large deforma-
tions, such as the Piola–Kirchhoff stress tensor, which expresses
the stress relative to the reference configuration (in contrast to the
Cauchy stress tensor that expresses the stress relative to the
present configuration); the Biot stress tensor, which expresses
the forces due to stretch only applied in the undeformed body per
unit undeformed area; or the Kirchhoff stress tensor, which is
widely used when there is no change in volume during plastic
deformation [6]. Another possibility is the Saint Venant–Kirchhoff
model:

σ ¼ λTrðεGÞI3þ2μεG

where λ and μ are constants specific to each material and define
the way it is deformed, and I3 is the 3�3 identity matrix. For more
information on these tensors, we refer the interested reader to the
works authored by Bonet and Wood [6] and Chakrabarty [7].

In general, the stress tensor σ is a symmetric 3�3 matrix, so it
has 3 real eigenvalues. These eigenvalues correspond to the stresses
in the principal directions, represented by its respective eigenvectors
to the principal stress directions. Positive eigenvalues indicate ten-
sion, while negative eigenvalues represent compression.

It is possible to compute the body force f for each point from σ
as

f ðx; tÞ ¼∇ � σðx; tÞ
whose elements are f i ¼∑j∂jσij. With these forces f ðx; tÞ, we can
model deformation using the equations of motion. In general,
these equations are posed in terms of the density ρ of the material,
which again is a function of position x and time t:

ρðx; tÞ ∂
2

∂t2
x¼ f iðx; tÞ

However, for general cases it is almost impossible to find an
analytical solution, and we must resort to numerical methods,
which are the subject of the following sections.

3.2. Brittle and ductile fractures

We can define an elastic material as one that will return to its
original shape when the external forces on it cease to exist. To the
contrary, a plastic material will not go back to its original config-
uration. Real materials usually have a limited elastic behavior, and
if deformed beyond a certain threshold (called elastic limit or yield
point), they will undergo a plastic deformation. If the material is
deformed further, there is another limit, called the failure threshold
σmax, which is the point at which the material s. This failureFig. 1. The displacement vector field uðxÞ.
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