

CHEMOSPHERE

Chemosphere 69 (2007) 712-718

www.elsevier.com/locate/chemosphere

Effects of water vapor pretreatment time and reaction temperature on CO₂ capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor

Yongwon Seo ^a, Sung-Ho Jo ^b, Chong Kul Ryu ^c, Chang-Keun Yi ^{b,*}

Department of Chemical Engineering, Changwon National University, Changwon, Gyeongnam 641-773, Republic of Korea
Clean Energy System Research Center, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
Global Environment Group, Korea Electric Power Research Institute, Daejeon 305-380, Republic of Korea

Received 19 December 2006; received in revised form 14 May 2007; accepted 14 May 2007 Available online 29 June 2007

Abstract

 CO_2 capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO_2 removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via ^{13}C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO_2 removal was initially achieved and maintained for about 1-2 min at 50 °C with 2 s gas residence time, while without proper water vapor pretreatment CO_2 removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 °C temperature range, while regeneration more effective at the higher temperature over the 135-300 °C temperature range. To maintain the initial 90% CO_2 removal, it would be necessary to keep the regeneration temperature higher than about 135 °C. The results obtained in this study can be used as basic data for designing and operating a large scale CO_2 capture process with two fluidized-bed reactors. © 2007 Elsevier Ltd. All rights reserved.

Keywords: CO2; Capture; Dry sorbent; Carbonation; Fluidized-bed reactor

1. Introduction

The concentration of CO₂ in the earth's atmosphere is increased by combusting fossil fuels to generate electricity. Recently, research in CO₂ capture and storage has attracted increasing attention across a variety of industrial fields (Metz et al., 2005). Several methods have been suggested for CO₂ capture. These include wet absorption, adsorption, membrane separation, and cryogenic distillation. However, these methods need to overcome the limits of cost and energy required to treat the large flue gas streams from fossil fuel-fired power plants. Recently CO₂ capture using dry regenerable sorbents has been studied

as an innovative concept for CO₂ recovery (Fauth et al., 2004; Liang et al., 2004; Abanades et al., 2005; Ryu et al., 2005). Nelson et al. (2005) presented some results from a circulating fluidized-bed reactor. Yi et al. (2005, 2007) and Yi et al. (2006) have shown CO₂ reaction characteristics of dry sorbent in a bubbling fluidized-bed reactor or in the continuous solid circulating mode between a fast fluidized-bed carbonator and a bubbling fluidized-bed regenerator. This study focused on the performance of solid sorbent in a bubbling fluidized-bed reactor.

CO₂ is efficiently removed from the flue gas stream by reaction with solid sorbent while regeneration produces an off-gas containing CO₂ and H₂O for sodium- or potassium-based sorbent or only CO₂ for calcium-based sorbent. The condensation of an off-gas generates highly pure CO₂, which is suitable for chemical feed stock or storage. Because solid sorbents are derived from alkali metals and carbonated

^{*} Corresponding author. Tel.: +82 42 860 3673; fax: +82 42 860 3134. E-mail address: ckyi@kier.re.kr (C.-K. Yi).

solids can be regenerated solely from the heat in the flue gas stream, the solid sorbent process for CO₂ capture is expected to be cost-effective and energy-efficient (Liang et al., 2004). In the solid sorbent process, heat control is important to avoid hot spots generated during the highly exothermic carbonation reaction, and high superficial velocity is necessary to reduce reactor size. To meet these requirements a fluidized-bed reactor could be one of optimum candidates for the CO₂ capture process using dry sorbents. The fluidized-bed reactor can provide high heat and mass transfer rates between gas and particles, easily remove heat produced during exothermic reaction, and maintain isothermal conditions through the reactor due to rapid mixing. Thus the fluidized-bed reactor system would be suitable for large-scale operations (Kunii and Levenspiel, 1991).

The present work investigated the CO₂ capture characteristics and performance of a dry sorbent in a bubbling fluidized-bed reactor in order to obtain the basic operational parameters, which will be valuable for designing and operating a large scale CO₂ capture process with two fluidized-bed reactors. The effect of carbonation temperature, water vapor pretreatment and regeneration temperature on CO₂ removal was studied to check the capability of the sorbent. The extent of conversion of active component in solid sorbent particles after carbonation or regeneration was confirmed via ¹³C NMR (nuclear magnetic resonance). In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation and regeneration were measured by BET.

2. Experimental

2.1. Materials and apparatus

Fig. 1 shows the schematic diagram of the experimental apparatus for carbonation and regeneration, including a

bubbling fluidized-bed reactor. The apparatus consists of a gas injection part, reactor, bubbler for water vapor generation, gas post-treatment part, and gas analyzer. A reactor with an inner diameter of 0.05 m and a height of 0.8 m was made of quartz and placed inside of a furnace. Reactor temperature was controlled by a furnace and a temperature controller and measured by thermocouples fitted in the reactor. To prevent an abrupt rise in temperature and to keep the temperature constant, cold air was blown to the reactor during the carbonation reaction. Each gas flow was quantitatively controlled with a mass flow controller (Brooks, Japan). Effluent gas from reactor firstly passed through a condenser to remove H₂O, then passed through a filter to remove dust, and finally, to a gas analyzer (ABB, USA) which analyzes CO₂ every 10 s.

The spray-dried solid sorbent, Sorb NX35, used in this study was provided by KEPRI (Korea Electric Power Research Institute). It consists of 35% $\rm Na_2CO_3$ as an active ingredient and 65% support and binder for mechanical strength as well as pore structure. More details of sorbent preparation can be found in the other literature (Ryu et al., 2005). Sorb NX35 has a bulk density of 750 kg m⁻³, a mean particle diameter of 1.046×10^{-4} m, and an attrition index of 1.0, as defined by the ASTM (American Standard Testing Material) D5757-95 procedure, which corre-sponds to the 5-h loss.

2.2. Procedure

Taking the real operation conditions in a large scale fluidized-bed reactor into account, 0.09 kg of the sorbent was placed into the reactor to maintain a residence time of gas mixture of 2 s and a superficial velocity of 0.03 m s⁻¹. To simulate real flue gas composition, a gas mixture of 10% CO₂, 77.8% N₂ and 12.2% H₂O was used. The water vapor needed for carbonation was fed by passing the mixture gas

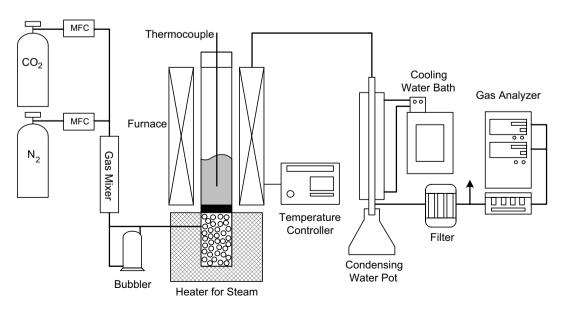


Fig. 1. The schematic diagram of experimental apparatus for carbonation and regeneration.

Download English Version:

https://daneshyari.com/en/article/4414732

Download Persian Version:

https://daneshyari.com/article/4414732

Daneshyari.com