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a b s t r a c t

We present a spatially and geometrically adaptive method for computing a robust polygonal approxima-
tion of an implicit curve defined on a planar region or on a triangulated surface. Our method uses affine
arithmetic to identify regions where the curve lies inside a thin strip. Unlike other interval methods, even
those based on affine arithmetic, our method works on both rectangular and triangular decompositions
and can use any refinement scheme that the decomposition offers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical solution of systems of non-linear equations in
several variables is a key tool in geometric modeling and
computer-aided geometric design [1]. In many applications, such
as surface intersection and offset computation, the solution is not
a set of isolated points but rather a curve or a surface. The simplest
case is the solution of an equation f ðx; yÞ ¼ 0, which gives an
implicit curve on the plane.

Computing a polygonal approximation of an implicit curve is a
challenging problem because it is difficult to find points on the
curve and also because the curve may have several connected
components. Therefore, robust approximation algorithms must
explore the whole region of interest to avoid missing any compo-
nents of the curve. One approach for achieving robustness is to use
interval methods [2,3], which are able to probe the behavior of a
function over whole regions instead of relying on point sampling.
Interval methods lead naturally to spatially adaptive solutions that
concentrate efforts near the curve.

Several interval methods have been proposed for robustly
approximating an implicit curve on the plane (see Section 2).
These methods explore a rectangular region of interest by decom-
posing it recursively and adaptively with a quadtree and using

interval estimates for the values of f (and sometimes of its
gradient) on a cell as a subdivision criterion.

Affine arithmetic (AA) [4] is a generalization of classical interval
arithmetic that explicitly represents first-order partial correla-
tions, which can improve the convergence of interval estimates.
Some methods have used AA for approximating implicit curves,
successfully exhibiting improved convergence, but none has
exploited the additional geometric information provided by AA
and none has worked on triangulations. Indeed, while all interval
methods can compute interval estimates on rectangular cells,
classical interval arithmetic cannot handle triangles naturally,
except by enclosing them in axis-aligned rectangles. Thus, existing
interval methods are restricted to rectangular regions. Moreover,
to handle implicit curves on triangulated surfaces, these methods
would have to use a 3d axis-aligned box containing each triangle,
which is wasteful.

In this paper, we describe an interval method for adaptively
approximating an implicit curve on a refinable triangular decom-
position of the region of interest. Our method uses the geometric
information provided by AA as a flatness criterion to stop the
recursion and is thus both spatially and geometrically adaptive in
the sense of Lopes et al. [5]. Our method can handle implicit curves
given by algebraic or transcendental formulas, works on triangu-
lated plane regions and surfaces of arbitrary genus, and can use
any mesh refinement scheme. Fig. 1 shows an example of our
method in action on a triangulated surface. Note how the mesh is
refined near the implicit curve.
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After briefly reviewing some of the related work in Section 2 and
the main concepts of AA in Section 3, we explain in detail in Section 4
how to use AA to extract geometric estimates in the form of strips for
the location of the curve in a triangle. This is the basis of an interval
method that can be used on triangulations, both on the plane and on
surfaces, which we present in Section 5. We discuss some examples
of our method in action in Section 6 and we report our conclusions
and suggest directions for future work in Section 7.

A previous version of this paper [6] focused on plane curves
only. Here, we focus on curves on surfaces. We also discuss plane
curves for motivation, simplicity of exposition, and completeness.
In addition to the material on surfaces presented in Sections 4.4
and 6, we include a performance comparison of the strategies for
handling triangles with AA in Section 4.3 and an expanded and
detailed explanation of how our method works in Section 5.

2. Related work

Dobkin et al. [7] described in detail a continuation method for
polygonal approximation of implicit curves in regular triangular
grids generated by reflections. Since the grid is regular, their
approximation is not adaptive. The selection of the grid resolution
is left to the user. Persiano et al. [8] presented a general scheme for
adaptive triangulation refinement which they applied to the
polygonal approximation of implicit curves in triangular grids.
These two methods work well for fine grids but they cannot claim
robustness since they rely on point sampling.

Suffern and Fackerell [9] were probably the first to apply
interval methods for plotting implicit curves adaptively using
quadtrees. Mitchell [10] revisited their work and helped to spread
the word on interval methods for computer graphics.

Snyder [11,12] described a complete modeling system based on
interval methods which included an adaptive algorithm for approx-
imating implicit curves. His algorithm uses interval estimates for
the gradient of the function defining the curve to incorporate global
parametrizability in the subdivision criteria. The leaf cells in the
resulting decomposition can vary in size, even though the approx-
imation is not explicitly adapted to the curvature of the curve.

Lopes et al. [5] presented an interval method for polygonal
approximation of implicit curves that uses interval estimates of
the gradient for finding an approximation that is both spatially and
geometrically adaptive, in the sense that it uses larger cells when
the curve is approximately flat. Their method is in the same spirit

as ours, except that it works only with rectangular quadtrees on
the plane and relies on automatic differentiation, which can be
avoided by using AA, as we shall show.

Comba and Stolfi [13] introduced AA and showed an example of
how it can perform better than classical interval arithmetic when
plotting implicit curves. Further examples were given by Figueiredo
and Stolfi [14]. Martin et al. [15] compared the performance of
several interval methods for plotting algebraic curves using quad-
trees, including methods based on AA and variants. None of these
papers exploited the additional geometric information provided by
AA. This has been done for ray tracing implicit surfaces by Cusatis
et al. [16] and for approximating parametric curves by Figueiredo
et al. [17], but as far as we know has not yet been done for polygonal
approximation of implicit curves, either on the plane or on surfaces.

Bühler [18,19] proposed a cell pruning method based on a
linearization of implicit objects derived from AA. In addition to
reducing the number of enclosure cells, her method provides a tight
piecewise linear covering adapted to the topology of the object instead
of a covering using overestimated axis-aligned bounding boxes. This
approach is in the same spirit as our own, but it uses rectangular cells
only and can generate approximations with cracks across cells.

3. Affine arithmetic

We now briefly review the main concepts of AA. For details, see
[20] and [4].

Like classical interval arithmetic [2,3], affine arithmetic is an
extended arithmetic: it represents real quantities with more than
just one floating-point number; it provides replacements for the
standard arithmetic operations and elementary functions that
work on such extended representations; and it is able to extract
information on the range of computed quantities from the
extended representation. The computations in both interval and
affine arithmetic take into account all rounding errors in floating-
point arithmetic and so provide reliable results.

Interval arithmetic uses two floating-point numbers to repre-
sent intervals containing quantities. Affine arithmetic represents a
quantity q with an affine formbq ¼ q0þq1ɛ1þq2ɛ2þ⋯þqnɛn

where qi are real numbers and ɛi are noise symbols which vary in
the interval ½�1;1� and represent independent sources of uncer-
tainty. From this representation, one deduces an interval estimate

Fig. 1. Our method in action for the knot curve given implicitly by y2ð3þ2yÞ�ðx2�1Þ2 ¼ 0 on an unstructured triangle mesh: (a) input coarse mesh and (b) adaptively refined
mesh and polygonal approximation (green) computed by our method. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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