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a b s t r a c t

We present a fast corotational finite element framework for example-driven deformation of
3-dimensional solids. An example-driven deformation space and an example space energy is constructed
by introducing the modified linear Cauchy strain with rotation compensation. During this simulation, our
adopted total energy functional is quadratic, and its corresponding optimization can be quickly worked out
by solving a linear system. For addressing the possible errors, we propose an effective error-correction
algorithm. Some related factors including the parameters and example weights are also discussed. Various
experiments are demonstrated to show that the proposed method can achieve high quality results.
Moreover, our method can avoid complex non-linear optimization, and it outperforms previous methods
in terms of the calculation cost and implementation efficiency. Finally, other acceleration algorithms, such as
the embedding technique for handling highly detailed meshes, can be easily integrated into our framework.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Simulation of deforming objects is one of the active topics in
computer graphics, and it has been widely applied in the movie
industry, digital entertainment and product design. Over the years,
researchers have conducted a large amount of excellent work on
model deformation simulation, namely, editing, material model-
ing, user interaction and other related issues. With the repaid
development of deformable model acquisition, example-driven
deformation techniques [1–3] have received much attention, and
their applications have also become the extension of the key frame
animation and physical simulation.

Most of the approaches in the example-driven deformation
domain construct an energy functional of the object and solve the
corresponding optimization problems for obtaining the node
positions and reconstructing the shapes. In general, the energy
functional is composed of two parts, which are the deformation
energy and the constraint energy introduced by examples. More-
over, the later part influences the simulation results by construct-
ing an example deformation space. Both parts can be constructed
by geometric and physical methods. In comparison, physical

methods can more easily reflect the physical properties of the
model materials.

Example-driven deformation can produce more diverse effects
than conventional key frame techniques in many applications.
However, the induced optimization problem always leads to
complex non-linear solutions. This limits the simulation response
time as well as the solution scale.

In this paper, an efficient computing framework for example-
driven deformation is presented. Inspired by existing approaches,
we construct an energy functional of the deformable models in a
physically based context. For modeling the deformation metric, we
apply a revised Cauchy strain for efficient simulation. At the same,
the corotational method is integrated to tackle the large deforma-
tion problem and also to form the example deformable space.

Compared with previous methods, the proposed method is
based on linear strain, and the induced optimization can be
worked out quickly by simply solving a linear system. To address
the possible errors, an effective error-correction algorithm is
proposed. Moreover, it is easy for our framework to integrate the
existing speed-up algorithms such as the embedding technique for
highly detailed meshes.

2. Related work

We will briefly review related work on physically based
animation, shape interpolation, example driven deformation and
other relevant topics.

In the 1980s, the pioneering work in the field of physically
based animation was proposed by Terzopoulos et al. [4]. The main
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goal of this research field is to improve the simulation reality,
speed and stability for computer animation. A large number of
studies have been performed, including mass–spring, FEM and
meshless approaches. Many issues have been thoroughly dis-
cussed, including the approximated solution of a control PDE,
processing on large deformations and other topics. A more
detailed overview can be found in [5–7].

To tackle the nonlinear issue in a large deformation, the
corotational method [8], which is also called stiffness warping
[9,10], has been widely applied. This category of methods fac-
torizes the large deformation into two parts, which are the linear
deformation and the rigid rotation quantities. In each simulating
step, the stiffness matrix composes the linear stiffness and rotation
compensation. Thus, the treatment for non-linear factors can be
simplified and the simulation procedure can be sped up. Recently,
the corotational technique has become a mainstream method in
many computer graphics applications [11,12].

Shape interpolation is an important issue in geometry proces-
sing. Many techniques have been proposed for morphing and
shape editing. Alexa et al. [13,14] proposed an array of methods for
shape interpolation as rigid as possible. Subsequently, many
researchers have conducted a substantial amount of work addres-
sing the rotation issue during interpolation, such as Lipman et al.
[15]. Based on the differential coordinates of a surface mesh, Xu
et al. [16] proposed a Poisson equation based formulation for
shape interpolation. Huang et al. [12] added dynamic effects in the
shape interpolation. There is a substantial amount of other work,
such as [17,18] which tackled the interpolation issue of spatial
rotation. In addition, as a natural extension of shape interpolation,
Kilian et al. [19] discussed techniques to construct deformation
space from examples.

Surface deformation has received continuous attention for
many years [20]. The MeshIK [21] is one of the representative
methods for creating deformable models based on deformation
examples. This method has been extended in later publications
[22,1]. Moreover, it is one of the research bases for many
techniques of example driven deformation.

Frohlich et al. [1] proposed a framework of example-driven
deformation based on discrete shells, and the framework can
generate static deformation of triangle meshes, combining exam-
ples and physical laws. More recently, Martin et al. [2] presented
an example-based method for elastic materials that implements
dynamic deformations following the physical laws. They adopted
nonlinear Green strain to create a deformation metric space and
construct the solved energy functional, including the elastic
deformation energy and the energy that reflects the examples
effects. Then, they solved and obtained the deformable shapes of
the elastic models by using the Newton–Raphson optimization,
and a performance nickel is the nonlinear optimization. Later,
Schumacher et al. [3] implemented a similar method for elastic–
plastic deformation. Specifically, as an extension of the method in
[3], Coros et al. [23] presented a method for controlling the
motions of active deformable characters. Koyama et al. [24] also
formulated an analogous concept to generate plausible animation
in a shape-matching framework.

In this paper, we present an example-driven deformation
framework, in which the enhanced Cauchy strain is adopted to
quantize the deformation metric and a corotational technique is
applied to compensate the artifact induced by linear calculation in
large deformations. In the following sections, the formulation of
the problem is presented and the applications of static and
dynamic deformation are discussed. At the same time, an effective
error-correction algorithm is given. Then, we use an embedding
technique to speed up the computing procedure. Moreover,
several examples are presented to prove the efficiency of the
method, and several related factors in deformation calculating is

briefly discussed. Finally, the limitations of the proposed method
and our future work are described.

3. Formulation

Without loss of generality, we assume that a given solid Ω�R3

is discretized into a linear tetrahedral mesh with n nodes and m
elements. Let X, xAR3n denote position vectors that describe the
initial and deformed configurations, respectively. x1;…; xkAR3n

represent the position vectors of k input deformation examples.
We will construct an example driven-deformation space, and define
the solved energy functional by using the corotational Cauchy strain.

3.1. Corotational Cauchy strain

The behavior of deformable solids is mainly modeled as the
movements of the inner points in elastic mechanics. Given a solid,
the movement of any point pAΩ can be denoted as

p : Ω� R-R3 : ðX;0Þ↦xðX; tÞ:
In a linear FEM simulation, the procedure of solid deformation is
basically depicted by the deformation gradient, which can be
calculated by

F¼ ∂x=∂X;

where F is not rotation invariant. In a large deformation, a rigid
rotation can lead to the changing of F and a straightforward linear
FEM calculation can produce undesirable artifacts due to the non-
linear nature of the rotation transform. Thus, we apply corotational
FEM simulation for the rotation compensation.

For any one tetrahedron element j, the corotational deformation
gradient is calculated as

F̂
e
j ¼ ∂ðRe>

j xe
j Þ=∂X¼ Re>

j Fej

where superscript e indicates that the vector or matrix is calcu-
lated from an element. Re

j is a block diagonal matrix, each of
whose sub-blocks is a mapping element rotation matrix. The
element rotation matrix is a 3�3 unitary matrix that can be
computed by the polar decomposition of the deformation gradient
Fej . Thus, we have a corotational version of the Cauchy strain
metric for the element

εj ¼ ðF̂>
j þ F̂ jÞ=2;

which is rotation invariant. Moreover, the corotational Cauchy
strain of an element can be represented as

εej ¼ Be
j ðRe>

j xe
j �Xe

j Þ ð1Þ

where Xe
j ¼ ½Xe>

j;1 jXe>
j;2 jXe>

j;3 jXe>
j;4 �> and xe

j ¼ ½xe>
j;1 jxe>

j;2 jxe>
j;3 jxe>

j;4 �> are
the initial and deformed coordinates of the nodes in the j-th element,
respectively. Be

j is a constant matrix related to the geometry of the
element, and the details can be found in [25–27]. Furthermore, a 3�3
strain matrix can be denoted as a 6-dimensional vector by using Voigt
notation. For any one shape of the given deformable model, a unique
element strain vector is defined

ε¼ ½εe1εe2⋯εem� � R6m

To quantify the deformation, we introduce UdeformðxÞ to measure the
deformation energy between the current shape x and the initial
configuration X:

Udeform ¼ 1
2

Z
V
ε>Dɛ dV ¼ 1

2
∑
m

j ¼ 1
εe>j Dɛej V

e
j

where D is the properties matrix of the material, εej denotes the strain
of the j-th element, and Vj

e is the corresponding element volume.
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