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This paper is concerned in shape-preserving Hermite interpolation of a given function f
at the endpoints of an interval using rational functions. After a brief presentation of the
general Hermite problem, we investigate two cases. In the first one, f and f ′ are given
and it is proved that for any monotonic set of data, it is always possible to construct
a monotonic rational function of type [3/2] interpolating those data. Positive and convex
interpolants can be computed by a similar method. In the second case, results are proved
using rational function of type [5/4] for interpolating the data coming from f , f ′ and f ′′
with the goal of constructing positive, monotonic or convex interpolants. Error estimates
are given and numerical examples illustrate the algorithms.
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1. Introduction

This paper is concerned in shape-preserving Hermite interpolation of a given function f and its derivatives at the end-
points of an interval ([0,1] is chosen for the sake of simplicity) using rational functions. After a brief presentation of the
general Hermite problem, we investigate two cases.

In the first one, f and f ′ are given and it is proved that for any monotonic set of data, it is always possible to construct
a monotonic rational function of type [3/2] interpolating those data. Positive or convex interpolants can be build by similar
algorithms. This first problem has been studied by many people, in particular by Gregory and coworkers in several papers,
e.g. Delbourgo and Gregory (1985), Gregory and Sarfraz (1990). Even if the results are similar, our approach is slightly
different as it is based on the properties of a control polygon associated with the function.

The control polygon is again used as a tool in the second case where f , f ′ and f ′′ are given. For any positive (resp.
monotonic, convex) set of data, algorithms are designed to construct a positive (resp. monotonic, convex) rational function
of type [5/4] interpolating any suitable data. This second problem had not been considered in its full generality.

In the two cases, the interpolant is depending on a free parameter σ and for each subcase, we give an algorithm to
obtain the solution and not only a result of existence. Error estimates are set up and numerical examples illustrate the
various algorithms adapted to each problem.

We only cite some papers solving this problem by using various families of methods. They can be classified as fol-
lows: polynomials with variable degrees (Costantini, 2000), Chebyshev systems (Costantini et al., 2005), rational func-
tions (Carnicer et al., 1996; Clements, 1990; Delbourgo and Gregory, 1985; Gregory and Sarfraz, 1990), polynomial
splines (De Vore, 1977; Eisenstat et al., 1985; Schumaker, 1983) and subdivision methods (Lyche and Merrien, 2006;
Merrien and Sablonnière, 2003; Pelosi and Sablonnière, 2008). A different approach for C2 (and more) interpolation with
shape constrains was proposed in Costantini et al. (2001), Manni (2001) with parametric curves.
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Here is an outline of the paper. In Section 2, we study some properties of the families R[n/n − 1] of rational functions
that are used later. For this set, we have the possibility of associating a control polygon to any function R ∈R[n/n−1] which
is obtained by reproduction of affine polynomials (this idea was introduced in Piţul and Sablonnière, 2009; Sablonnière,
2009). As usual in CAGD, thanks to the total positivity of basic functions, the shape properties of the control polygon imply
those of the underlying function (see e.g. Goodman, 1996). In Section 3, we give the general solutions of various Hermite
interpolation problems at endpoints of the interval [0,1] by rational functions in convenient spaces R[n/n − 1].

Sections 4 and 5 are devoted to the algorithms for shape constrained problems. As the considered problems have an in-
finite number of solutions, we deliberately chose the parameters in order to design simple algorithms in the forms of Lyche
and Merrien (2006) for the computation of satisfying solutions. Then numerical examples test the feasibility of the meth-
ods. We have only proposed a brief approach of the case R[3/2] (already studied in Delbourgo and Gregory, 1985) with the
solution of the monotonic problem deduced from the shape of the control polygon. For the second Hermite interpolation
problem in R[5/4], the study is subdivided into three parts corresponding to constraints of positivity, monotonicity and
convexity.

Finally, in the last section, first subsection, we give some bounds on the errors f − R and f ′ − R ′ for functions f
having a bounded fourth (resp. sixth) derivative. In addition, we explicitly compute some values of the constants involved
in majorations for both families R[3/2] and R[5/4] of rational interpolants. For f − R , those constants can be bounded
independently from the parameter introduced in the algorithms allowing shape constrains. Then, in the second subsection,
we show that, for Hermite interpolation in R[5/4] on the interval [0,h], we can obtain an error f − R in O (h4) (instead
of O (h2)), with our choice of the parameter σ in the monotonic case with data such that f ′(a) > 0 and f ′(a + h) > 0.
A similar result was already obtained in Delbourgo and Gregory (1985) for interpolants in R[3/2].

It is clear that the local schemes presented in this paper can be used for piecewise Hermite interpolation with shape
constraints, as done e.g. in Lyche and Merrien (2006). In addition, the latter may vary in each interval, shape constraints can
be accumulated and the choice of the local rational interpolant can be adapted to each specific case.

2. Basis and control polygon

For every positive integer n � 2, a rational function of type R[n/n − 1] is defined by

R(t) = P (t)

Q (t)
=

∑n
i=0 w̄ici Bn

i (t)∑n−1
j=0 w j Bn−1

j (t)
, (1)

where for p = n − 1 or p = n, the B p
i (t) = (p

i

)
ti(1 − t)p−i , i = 0, . . . , p, are the Bernstein polynomials in Pp . For the sake of

convenience, we set B p
i (t) = 0 for i < 0 and i > p.

The weights {w j} j=0,...,n−1 of the denominator are supposed to be positive and will be the shape parameters. The weights
{w̄i}i=0,...,n of the numerator are depending on the w j ’s and are chosen in such a way that both monomials m0(x) = 1 and
m1(x) = x have a rational representation of the above type (1). Following Sablonnière (2009), these weights are computed
as in Proposition 1 below. The ci ’s are the control coefficients of the rational function R .

Definition 1. A function f is reproduced by the representation of type R[n/n − 1] if there exists (ξi)i=0,...,n such that for

t ∈ [0,1], f (t) =
∑n

i=0 w̄i f (ξi)Bn
i (t)∑n−1

j=0 w j Bn−1
j (t)

.

Proposition 1. Both monomials m0 , m1 are reproduced by the rational functions of type R[n/n − 1] if and only if, for i = 0, . . . ,n,

w̄i = i

n
wi−1 +
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n

)
wi, (2)

ξi = i

n

wi−1

w̄i
(3)

where w−1 = wn = 0.

Proof. Since for any n, i, j ∈ N and t ∈ [0,1], we have jBn
j (t) = nt Bn−1

j−1(t) and (n − j)Bn
j (t) = n(1 − t)Bn−1

j (t), it is easy to
prove that when defining w̄i by (2) with w−1 = wn = 0, we obtain by degree raising

1 ×
n−1∑
j=0

w j Bn−1
j (t) =

n∑
i=0

w̄i Bn
i (t), t ∈ [0,1].

Conversely, the unicity of the decomposition of 1 × ∑n−1
j=0 w j Bn−1

j (t) in the Bernstein basis {Bn
i (t)}i=0,...,n gives the unicity

of the w̄i depending on the w j .
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