
Technical Section

Using visualization for visualization: An ecological interface design
approach to inputting data$

H. Wright a,n, C. Mathers a, J.P.R.B. Walton b

a Department of Computer Science, University of Hull, Hull HU6 7RX, UK
b Numerical Algorithms Group Ltd, Jordan Hill Road, Oxford OX2 8DR, UK

a r t i c l e i n f o

Article history:

Received 11 January 2012

Received in revised form

10 January 2013

Accepted 20 January 2013
Available online 9 February 2013

Keywords:

File organization

Information search

Ecological interface design

Pattern recognition

Scientific visualization

a b s t r a c t

Visualization is experiencing growing use by a diverse community, with continuing improvements in

the availability and usability of systems. In spite of these developments the problem of how first to get

the data in has received scant attention: the established approach of pre-defined readers and

programming aids has changed little in the last two decades. This paper proposes a novel way of

inputting data for scientific visualization that employs rapid interaction and visual feedback in order to

understand how the data is stored. The approach draws on ideas from the discipline of ecological

interface design to extract and control important parameters describing the data, at the same time

harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format

discovery rather than file format description, so the method can therefore still work when nothing is

known initially of how the file was originally written, as is often the case with legacy binary data.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Visualization provides scientists, researchers and engineers
with an invaluable tool for understanding their data. Since
coming to the fore in 1987 [1], work to improve the usability of
visualization systems has variously addressed the problem of data
representation [2], technique selection [3], and satisfying certain
goals or interpretation aims [4–6]. More recently, improvements
have been made in securing the provenance and reproducibility of
visualizations [7,8] and in tackling the complexity of using
visualization software [9,10]. However, the problem of data input
continues to receive comparatively little attention, even though it
is estimated by some expert practitioners to consume up to 90%
of the effort when visualizing clients’ data [11].

In this paper we present a novel approach to inputting
visualization data that uses visualization at the earliest stages,
even before the file structure is completely understood. After
summarizing conventional approaches we apply the principal
features of ecological interface design (EID)—work domain ana-
lysis, the abstraction hierarchy of means–ends relations, and
constraints arising from the work domain—to describe the
problem of file input. This approach encourages thinking about
the constituent activities of file input as a set of distinct methods

that can be combined in multiple ways, rather than the traditional
approach of constructing multiple self-contained recipes. We go
on to demonstrate our software implementation in the IRIS
Explorer visualization package [12] with two interpretations of
binary data carried out a priori. The paper concludes with a review
of the intended scope of the work and its perceived contribution.

2. Existing approaches to inputting data

Data intended for visualization falls into two broad types: it
exists either (1) in some pre-defined format or (2) in some user-
defined or unpublished format. Herein may lie the reason for the
lack of attention paid to this problem, since the former situation is
generally considered to be resolved whilst the latter appears
unresolvable in general. It is indeed tempting to assume that
inputting data according to some pre-defined standard is a
straightforward matter, but sometimes it is not. Visualization
software that supports multiple file formats usually requires a
different reader function for each format, so the development
effort required can be substantial. In the field of chemistry alone,
for example, there are over 50 different file formats in use [13].

There are several different types of visualization software but
all employ essentially similar approaches to the support of pre-
defined formats. Turnkey visualizers that are designed to work
without customization by the user generally have a number of file
formats that they can import; systems begin by supporting a
small subset of definitions which grows over time with each new

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cag.2013.01.013

$This article was recommended for publication by M. Chen.
n Corresponding author. Tel.: þ44 1482 465247; fax: þ44 1482 466666.

E-mail address: h.wright@hull.ac.uk (H. Wright).

Computers & Graphics 37 (2013) 202–213

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.01.013
http://dx.doi.org/10.1016/j.cag.2013.01.013
http://dx.doi.org/10.1016/j.cag.2013.01.013
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.01.013&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.01.013&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.01.013&domain=pdf
mailto:h.wright@hull.ac.uk
http://dx.doi.org/10.1016/j.cag.2013.01.013

release. The class of general-purpose, customizable tools known
as modular visualization environments (MVEs; [14]) all include a
set of reader modules for common, pre-defined file formats,
though this set may differ from one MVE to another. As with
turnkey systems, it is common for the number of reader modules
to increase as a system matures due to the contributions of
vendors and aficionados.

Where the generating application writes data in some user-
defined, unsupported or unpublished format, the functionality of
the visualization system must be extended, either by program-
ming code to read the file or describing its format using a built-in
tool. For example, IRIS Explorer’s API allows users to incorporate
their own code into the visualization system by encapsulating it
within a series of ‘wrappers’ [12]; VTK [15] provides various
reader classes that the user can extend to fulfill their needs.
Examples of built-in tools for file input are IRIS Explorer’s
QuickLat [12] and DataScribe [12] tools, the Data Prompter and
General Array Importer which are components of Open DX [16]
and the AVS/Express Add File Import Tool [17].

Help is therefore at hand, but tackling the problem at the
programming and file description level ignores a key element: users
of scientific visualization often know something of how their data
may look, or have useful clues as to how it is stored or was
generated. They may be able to recognize when the representation
is faulty, but such recognition usually begins only after the data has
been read in, when the visualization process itself is underway.
Making better use of partial knowledge during file input has
motivated a new approach—a mechanism to input data on a per-
solution basis, incorporating interaction combined with visual feed-
back to guide the process. This philosophy contrasts with existing
methods that require prior knowledge of the file’s format in order to
make any attempt at reading it. Furthermore, because the process is
intentionally iterative there is no tendency for the whole reader to
collapse entirely when any small detail is overlooked. The result is a
set of tools which, whilst they can be used in the conventional way
to apply known formats, can also be used to mine visually for
unknown file storage parameters. This includes binary files for
which, if nothing is known, nothing can easily be gleaned. It is this
latter property which proves the most valuable, in some circum-
stances yielding complete solutions for file input problems that
would otherwise be completely intractable.

3. Inputting data—the ecological way

Classically the ecological approach occurs in continuous-
process control, where operators oversee and adjust outputs by
direct interaction with information coming from the production
plant (for examples see [18–21]). This section first describes the
foundation principles of EID and then applies these to the
problem of data file input.

3.1. Ecological interface design in brief

The EID framework was devised to reduce the rate at which
human errors arise during the control of complex systems and to
mitigate their effects should they occur [22]. The framework
recognizes three cognitive control mechanisms, namely skills,
rules and knowledge (SRK; [23]), which in turn give rise to
skill-based, rule-based and knowledge-based behaviour (SBB,
RBB, KBB). The EID approach aims to support interaction at the
lowest appropriate level of control, whilst at the same time
providing support for higher levels, as needed [22]. Thus for the
most part the user will simply be reactive to signals provided by
the display (SBB), and preferably will act on the display directly.
At a higher level the use of rules may be prompted by the

emergence of familiar scenarios (RBB) or, more rarely, problem-
solving activity (KBB) will be undertaken on the system as a
whole [24]. In this way, efficiency can be maximized during
normal operations, whilst at the same time sufficient information
remains available to address unusual situations safely.

A valid question at this point is how EID, conceived in order to
reduce the effects of human error, is relevant to the problem of file
input. If we adopt the conventional approach of a file reader working
from an established format then the reader will either work if the
format is correctly understood or fail if it is not. The human has little
to do in this situation, other than look for another reader. However,
the approach we will take is an unconventional one of testing
various hypotheses about the type of the data, the size of an array
and the meaning and use of the variables. Such a trial-and-error

approach may well already be the technique of last resort for
inputting unknown file formats but can be impossibly slow when
the parameter search space is very large and the support tools are
weak. As such we can see parallels with the principles of EID: the
need for efficiency (in this case, to test many hypotheses); the need
to correct a previous assumption or action; and, the need for
visibility of the current (possibly imperfect) overall system state.
This property of goal-oriented behaviour resulting from perception
of the environment is central to the well-known ecological theory of
visual perception [25], from which EID in turn derives its name.
A key difference, however, is that the natural ecology (our observed
surroundings) is visible whereas the system state is normally
invisible. Characterizing system state as a collection of variables
and their inter-relationships is therefore central to the EID approach,
and accomplishing this for data file input is the subject of the next
two subsections.

3.2. Work domain analysis

Work domain analysis (WDA) aims to present a system at
different levels of abstraction, the so-called abstraction hierarchy
(AH). Levels are linked by means–end relations that answer the
questions Why?, What? and How? to achieve a particular goal
[26]. For example, interpreting a byte sequence in a particular
way (the ‘How?’) is the means to the end of understanding the
numerical values in a file (the ‘Why?’) and the concept (the
‘What?’) relating the two is the primitive type of the data
(Fig. 1(a)). The means–end relations are not anchored to any
particular level: manipulating the number and sizes of an array’s
dimensions, for example, is the means, along with the length of
the chosen primitive type, of ensuring it accounts for all the
values in a file (Fig. 1(b)). To enable flexible support in unantici-
pated scenarios, the AH aims to capture all such links and,
importantly, to show how decisions may interact. Work domain
analysis is thus very different to task analysis, which more closely

min<Values<max

Primitive type

Length, interpretation

Why?

What?

How?

Why?

What?

How?

Prod(Dims)xLen=File size

Dimensions, rank

Array shape

Fig. 1. A selection of the purposes and functions pertaining to data input,

organized as means–end relations. Means–end relations answer the goal-oriented

questions ‘Why?’, ‘What?’, and ‘How?’ (cf. [26, Fig. 7.10]).

H. Wright et al. / Computers & Graphics 37 (2013) 202–213 203

Download English Version:

https://daneshyari.com/en/article/441506

Download Persian Version:

https://daneshyari.com/article/441506

Daneshyari.com

https://daneshyari.com/en/article/441506
https://daneshyari.com/article/441506
https://daneshyari.com

