
Technical Section

Stream-based animation of real-time crowd scenes$

Wayne Daniel Lister n, Andy Day

School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom

a r t i c l e i n f o

Article history:

Received 10 May 2011

Received in revised form

16 February 2012

Accepted 20 February 2012
Available online 13 March 2012

Keywords:

Crowd simulation

Animation

OpenCL

a b s t r a c t

We present a new way of drawing a crowd of animated characters in real-time. Previous work has

focused almost exclusively on how to visualize ever larger crowd scenes and the current state-of-the-

art can display tens of thousands of virtual humans with ease. The associated trade-off, however, is that

crowd members can do little more than play a set of scripted motion clips. It follows that designating

individuals to be members of a crowd instantly limits the techniques that can be used, the behaviours

that can be depicted and ultimately, the perceived realism of a scene. Our approach differs from the

state-of-the-art in that we do not propose a crowd-specific technique but instead a bone-parallel,

OpenCL-accelerated interpretation of the traditional character pipeline. The method does not rely on

pre-processing; provides fine-grained control over the animation of a crowd (support for motion

blending and varied skeletons, for example) and crowd members and user-controlled ‘hero’ characters

can be handled without distinction.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many real-time applications have the need to display a crowd
of autonomous characters. Examples can be found in the fields of
cultural heritage visualization [1,2] and urban simulation [3,4]
whilst recent years have seen the gaming industry adopt an
increasingly prominent role [5,6]. Here members of a crowd can
be cast as soldiers in battle, pedestrians in a city, and stadium or
trackside spectators. Crowd simulation continues to elicit a
significant body of work as developers strive to make their virtual
worlds ever more realistic. Believable crowds are an important
addition because even the most immersive of environments can
appear post-apocalyptic without its inhabitants [7].

An effective crowd visualization consists of two main parts;
behaviour simulation and rendering. In this paper we consider the
rendering side of the problem and here the longstanding require-
ment has been to display as large and as diverse a crowd as
possible. Processing a large number of animated characters is a
computationally demanding problem and early researchers had
little choice but to explore aggressive level-of-detail techniques.
These were then relaxed in view of graphics hardware advances
so as to improve the quality of individuals. First impostors were
used to represent members of a crowd [8,9], then hybrid impos-
tor/geometry systems [3,4] and finally standalone mesh-based

techniques once GPUs were shown to deliver the required
character throughput [10]. The current state-of-the-art [11,12]
can display tens of thousands of skinned virtual humans in real-
time but the associated trade-off is that crowd members can do
little more than play a set of scripted motion clips. It follows that
by designating individuals to be members of a crowd, one
instantly limits the techniques that can be used, the behaviours
that can be depicted and ultimately, the perceived realism of
a scene.

In this paper we describe a new way to visualize a crowd of
animated characters in real-time. Our approach differs from the
state-of-the-art in that we do not propose a crowd-specific
technique but instead a bone-parallel, OpenCL-accelerated inter-
pretation of the traditional character pipeline. The key advantages
of our method when compared to crowd rendering techniques
such as those in [11,13] are that it does not rely on pre-
processing; it provides developers with far more control over
the animation of their crowds (by way of support for motion
blending and varied skeletons for example) and crowd members
and user-controlled ‘hero’ characters can be handled without
distinction.

2. Motivation

Drawing a crowd presents two separate challenges: that of
rendering a large number of virtual humans and that of introdu-
cing plausible crowd variety. Significant progress has been made
in recent years and many of the fundamental problems can now
be considered solved. Work in [11,12] uses a combination of

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cag.2012.02.014

$This article was recommended for publication by W. Wang.
n Corresponding author.

E-mail addresses: w.lister@uea.ac.uk (W.D. Lister),

Andy.Day@uea.ac.uk (A. Day).

Computers & Graphics 36 (2012) 651–657

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2012.02.014
mailto:w.lister@uea.ac.uk
mailto:Andy.Day@uea.ac.uk
dx.doi.org/10.1016/j.cag.2012.02.014

hardware skinning and geometry instancing to visualize many
thousands of skin-animated characters. Work in [14,15] presents
a number of techniques to achieve crowd variety and in [16,17]
the authors investigate where best to focus artistic and computa-
tional resources so as to maximize the perception of variety by a
user. LOD techniques in terms of geometry, skeleton and motion
simplification are considered in [18] but despite all of these
advances, there still remains a clear disparity between members
of a crowd and ‘regular’ characters processed by the traditional
character pipeline. One of the reasons for this disparity can be
found by examining the skeletal animation equation (1). The
position v(t) of a vertex at time t is given by its position, u, in
pose-space To,i and a weighted blend of k bone transformations T t

i.
Skinning then transforms each vertex to follow the skeletal
motion:

vðtÞ ¼
Xk

i ¼ 1

wiT
t
i T
�1
o,i

 !
u ð1Þ

Drawing a crowd in this way requires a significant amount of
computation but performance can be improved by evaluating the
set of all possible Tt

i T
�1
o,i terms as a pre-process [11]. This method

forms the state-of-the-art but its use of pre-computation intro-
duces several limitations. First of all, animations are bound to a
specific skeleton and a copy of the data must be stored for each
character model, which limits the number of models that can be
used. Second, all animations have to be known in advance and
techniques such as motion blending, IK and ragdolls cannot be
supported. None of this has been considered a problem in
previous years because most real-time applications have
demanded only very basic functionality from their crowd sys-
tems. However it is inevitable that users’ expectations will soon
start to rise. In a typical urban simulation for example, it is
desirable for pedestrians to be able to look in shop windows, get
in and out of vehicles and check for traffic before walking across a
road. These scenarios are difficult to depict by way of crowd
rendering techniques alone and it follows that a truly believable
visualization must incorporate two separate character systems; a
fast crowd pipeline for the many thousands of ‘unimportant’
crowd members and the traditional ‘hero character’ pipeline for
everybody else.

In this paper we target crowds of up to around 10,000 virtual
humans in size and argue that using dedicated crowd techniques
to animate and render these scenes no longer makes any sense.
Work in [19] considers crowd motion blending for example and in
[20] a specialist gaze controller is used to make crowd members
look-at points of interest in their environment. Such techniques
tend to be required by very few crowd members at a time and yet
handling these individuals requires a significant amount of effort,
often duplicating functionality that is already provided by the
traditional character pipeline. We therefore approach the problem
of animating a crowd from the opposite direction. Instead of
developing crowd-specific techniques, why not take the tradi-
tional character pipeline and try to build a crowd system?

3. Stream-based skeletal animation

Our technique differs from the state-of-the-art in that Eq. (1) is
evaluated at runtime and for all crowd members, every frame. The
problem is modelled by using a pipeline of three OpenCL kernels
called Pose, Transform and Write-Back (Fig. 1). The Pose kernel
orients bones in pose-space by sampling an animation clip; the
Transform kernel propagates bone transformations down a skele-
ton hierarchy and the Write-Back kernel multiplies bones by the
inverse bind pose to create matrix palettes. The results are passed

(on-chip) to an OpenGL context and are then used by a vertex
shader to skin the corresponding meshes.

3.1. Skeleton data

The pipeline makes use of two main data-structures; a skele-
ton buffer and a bone buffer. The skeleton buffer stores a set of
template skeletons that can be shared by all members of a crowd.
Whereas skeletons are often modelled by a tree-based hierarchy
of bone nodes it is known that this will impede the flow of data
due to non-contiguous memory accesses and explicit hierarchy
traversals [21]. We perform a level-order flattening of the hier-
archy and organize data in structure-of-arrays form (Fig. 2).

When a crowd member is spawned they are assigned a
skeleton from the skeleton buffer. All skeletons are considered
to be generic in the sense that they describe only constant
attributes. To store data specific to each crowd member, namely
their current pose, we define a bone buffer. Kernels can read
bones from the bone buffer, process them and write back to the
bone buffer in place of the original data. We store the bone buffer
in global memory and take care to avoid strided and misaligned
memory access patterns (non-coalesced) by concatenating data as
shown in Fig. 3. Each bone is represented by a translation,
rotation and scale component but interleaving them in this way
implies a strided access pattern. We therefore separate the
components and store them contiguously in memory. A further
concern relates to how bones are packed. Data must reside on a
boundary 16 times the size of the type being accessed to exploit
coalescing [22] and this implies 256-byte alignment. Fig. 3 depicts
a skeleton with 13 bones as an example. The first crowd member
stores translation components from location 0 onwards, leaves a
3 bone padding and begins storing rotation components at
location 16. Further padding surrounds the scale components
and a second crowd member can then be appended.

3.2. Pose kernel

Having presented the underlying data structures we now
introduce our first kernel. The Pose kernel (listed in Fig. 4) loads
a crowd member’s skeleton and orients its bones in pose-space by
sampling keyframe data from an animation set. Animation sets
are discussed later in Section 3.3. To run the kernel a crowd must

Fig. 1. Skeletal animation is modelled by a three stage pipeline of OpenCL kernels;

Pose, Transform and Write-Back.

W.D. Lister, A. Day / Computers & Graphics 36 (2012) 651–657652

Download English Version:

https://daneshyari.com/en/article/441579

Download Persian Version:

https://daneshyari.com/article/441579

Daneshyari.com

https://daneshyari.com/en/article/441579
https://daneshyari.com/article/441579
https://daneshyari.com

