
Technical Section

Meshless quadrangulation by global parameterization

Er Li a, Bruno Lévy b, Xiaopeng Zhang a,�, Wujun Che a, Weiming Dong a,b, Jean-Claude Paul b,c

a LIAMA-National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b INRIA-ALICE, France
c Tsinghua University, Beijing, China

a r t i c l e i n f o

Article history:

Received 13 October 2010

Received in revised form

20 May 2011

Accepted 20 May 2011
Available online 2 June 2011

Keywords:

Point cloud

Meshless parameterization

Quadrangulation

Surface reconstruction

a b s t r a c t

Point cloud is a basic description of discrete shape information. Parameterization of unorganized points

is important for shape analysis and shape reconstruction of natural objects. In this paper we present a

new algorithm for global parameterization of an unorganized point cloud and its application to the

meshing of the cloud. Our method is guided by principal directions so as to preserve the intrinsic

geometric properties. After initial estimation of principal directions, we develop a kNN(k-nearest

neighbor) graph-based method to get a smooth direction field. Then the point cloud is cut to be

topologically equivalent to a disk. The global parameterization is computed and its gradients align well

with the guided direction field. A mixed integer solver is used to guarantee a seamless parameterization

across the cut lines. The resultant parameterization can be used to triangulate and quadrangulate the

point cloud simultaneously in a fully automatic manner, where the shape of the data is of any genus.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Point cloud has been widely used in CAD and computer graphics
communities due to the availability of fast and accurate laser scan
devices. Usually there is no topological information in the raw scan
data. An amount of research work focuses on meshing the point
cloud while keeping the original surface geometry. Although most of
previous work can produce high quality triangular meshes, there is
little consideration about how to control the shape and orientation of
triangles in meshing the point cloud. On the other hand, more and
more recent work focuses on how to convert an unstructured
triangle mesh to a high quality quad mesh. Compared with a triangle
mesh, a quad dominant mesh is more preferred due to its tensor-
product nature desired in many applications, such as texturing,
simulation with finite elements and B-spline fitting. And the quad
meshes following principal directions are particularly appealing in
modeling as they capture the symmetries of natural geometry.
However, most of the methods are only applicable to meshes with
explicit connectivity information. To get the quad mesh representa-
tion of a point cloud, a trivial way is first converting the point cloud
to the triangular mesh with correct topology connection and then
adopting the quadrangulation method designed for a triangle mesh.
There are several problems about this straightforward approach:

� The conversion from a point cloud to a triangular mesh
consumes computational resources; this problem is more
critical when handling animation objects.

� Some geometry information may be lost during the process
from a point cloud to a triangular mesh, such as the recon-
struction method based on implicit form.
� A large polygon mesh also requires more space to store, so that

this is not convenient to data transmission through network.

To overcome the above problems, we quadrangulate the point
cloud directly through a meshless global parameterization. In this
paper, we assume that the point cloud is uniformly distributed
and well sampled, similar to the data obtained through laser
scanners. Under this assumption, our key observation is that there
is no need to convert a point cloud to a triangular mesh before the
global parameterization. And then the resultant parameterization
can be used to triangulate and quadrangulate the point cloud
simultaneously in a fully automatic manner.

Our method is an extension of a global parameterization method
[1] and we show that it is sufficient to quadrangulate a point cloud
only utilizing its kNN graph which is widely used in geometric
processing of point cloud. We design a smooth direction field across
the point cloud and then calculate a global parameterization
aligning well with the direction field. During those two stages of
the algorithm we use only the connection information of kNN graph
to measure smoothness of direction field on point cloud and
compute the global parameterization. The advantage over the
traditional way is that the resultant parameterization can be utilized
to reconstruct a triangular mesh and a quad mesh at the same time
and thus reduces the overall computation cost.

Our main contributions can be summarized as follows:

� A kNN graph-based algorithm to construct smooth direction
field on point cloud with main geometric feature alignment;
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� An extension of global parameterization method from a
triangle mesh to a point cloud;
� Applications of the parameterization in triangle meshing and

quad meshing.

2. Related work

Quad remeshing. Much work has been developed on quadran-
gulation of mesh models due to their wide advantages in various
application fields. More details can be found in [2]. Here we only
review the most related work.

Alliez et al. [3] remesh a triangular mesh into a quad dominant
mesh by flattening it onto a 2D parametric plane via a discrete
conformal parameterization and then by intersecting lines of
curvature properly integrated in the plane. Marinov and Kobbelt
[4] improve this method by directly integrating lines of curvature
on the triangular model, so that it can be used on a surface of
arbitrary genus. Dong et al. [5] build a harmonic scalar field, and
the gradients of this field provide a smooth vector field for
quadrilateral remeshing. Dong’s method generates a more regular
mesh but sacrifices feature alignment.

Another efficient way of quadrangulation is to decompose a
mesh model with complex shape into several patches, and then to
convert them into quadrilaterals, respectively. Boier-Martin et al. [6]
propose a clustering-based method to decompose the surface. Dong
et al. [7] construct the Morse–Smale complex of Laplacian eigen-
functions to form a quadrangular base mesh. The function distri-
butes extrema evenly across a mesh surface and thus the final
quadrilateral result is well shaped and with few singularities.
However, the feature alignment is not guaranteed. Tong et al. [8]
use a singularity graph to control the alignment and design the
quadrangulation with discrete harmonic forms to create quads.
Based on their work of [7], Huang et al. [9] propose a controllable
spectral method to remesh a triangular mesh. By enforcing orienta-
tion and alignment constraints upon Laplacian eigenfunctions,
better feature alignment is generated. Recently, the work in [10] is
able to remesh a surface into anisotropically sized quads based on
standing wave construction and quasi-dual MSC extraction [7].

Global parameterization has proven to be another useful tool for
quadrangulation. In [11] a periodic global parameterization guided
by principal directions is proposed to parameterize the input
triangular model. Then the quadrilateral mesh can be obtained by
tracking the iso-lines in the parameterized domain. This method
generates a high quality quad dominant meshes automatically with
little user interaction. In [12], they convert a given frame field into a
single vector field on a branched covering space. Then the surface is
cut and a global parameterization guided by the frame field is
calculated to produce a quadrilateral mesh.

While all of the mentioned methods are performed on mesh
data, the research is scarce yet on how to design a quadrangula-
tion of point cloud. Kalogerakis et al. [13] extract lines of
curvature from a noisy point cloud and these lines then can be
used for the direct reconstruction of a quad dominant mesh. This
method, similar to that in [4], inspires our method for direct
quadrangulation of pure point cloud data.

Meshless parameterization. While much work has been done on
mesh parameterization, there is only a little work focusing on
meshless parameterization. Some basic methods were discussed in
Floater and Reimers [14] to parameterize unorganized point sets.
These methods yield good results on the point surfaces with disk
topology. In [15], spherical parameterization is applied to mesh a 3D
point cloud to a manifold genus-0 mesh. Tewari et al. [16] extend the
work of Gu and Yau [17] to parameterize genus-1 point set surface
using discrete one-forms. More generally, Guo et al. [18] realize
global conformal parameterization on a point set surface and apply
the parameterization on thin-shell simulation.

3. Background work and overview of algorithm

Our approach performs global parameterization directly on a raw
and noisy point cloud, and then the resultant parameterization is
used to construct a curvature-aligned quad mesh. Here we first give
a brief introduction about the work [1] and then show the overview
of our adaptations. The quadrangulation of a triangle mesh consists
of two main steps: direction field construction and global para-
meterization. In the first stage, a set of salient directions are selected
by measuring their relative anisotropy, and then a smooth direction
field that take these directional constraints into account is solved in
terms of a mixed integer problem. In the second stage, the mesh is
cut into a disk-like surface with all singularities lying at the
boundary. Subsequently two scalar fields whose gradients follow
the direction field is computed as the final parameterization. Two
compatibility conditions across boundary are incorporated into the
parameterization as linear constraints to guarantee a seamless
global parameterization: first, the mismatch between parameter
values across the cut edge should be integer; second, the gradients
of parameter values meet the rotations by multiples of p=2.
Additionally, to make a pure quad mesh, the singularities are
required to be at integer locations.

To provide a robust and flexible framework for quadrilateral
meshing of a point set surface, our algorithm proceeds in three steps.

� First, we estimate the curvature tensor of each point to deduce
two principal directions, and we smooth these direction fields
globally to make the directions more consistent (Section 4).
� Second, we define an energy function and compute two scalar

functions by minimizing this energy so as to make gradients of
scalar functions best fit the principal directions (Section 5).
� Finally, a quadrilateral mesh is constructed according to the

parameterization obtained in the second step (Section 6).

We will describe in detail how we do in the first and second
steps on a point cloud, and the experiment results will be shown
and analyzed in Section 7.

4. Direction field construction on point cloud

Principal directions serve as a good start to construct the
direction field, but the question is that we can usually get high-
quality estimation of principal directions in a curved surface region
and the principal directions are not reliable in a flat one so that the
corresponding estimation is less meaningful for our purpose. Our
idea for this is defining the directions in these areas by smoothing
the direction field globally. For the point cloud the difficulty is how
to measure the smoothness of the direction field and identify
singularities since the face-based method is not suitable here. In
this section we address this problem by utilizing kNN graph.

Smoothness on kNN graph. For a point set surface, a variety of
methods have been developed to calculate curvature tensor as
accurate as possible. We only use the direction field to reflect the
rough geometric features, so a common method is accurate
enough. Here we adopt normal fitting method [19] to estimate
the normal and curvature tensor on each point.

The smoothness of a direction field should reflect the contin-
uous variations of directions on nearby points. So we employ
the concept of parallel transport [20] in differential geometry on
the kNN graph of the point cloud. Let p and q be two points on the
point set surface, and let Vp and Vq be two vectors on p and q,
respectively, Tp and Tq be the projections of p�q to the tangent
plane at p and q. Then Vp is said to be equivalent to Vq if the angle
between Vp and Tp is equal to the angle between Vq and Tq .
According to this definition we measure the smoothness of the
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