
Technical Section

Parallel generation of multiple L-systems

Markus Lipp a,�, Peter Wonka b, Michael Wimmer a

a Vienna University of Technology, Austria
b Arizona State University, Austria

a r t i c l e i n f o

Keywords:

L-systems

Graphics hardware

Parallel processing

Real-time rendering

a b s t r a c t

This paper introduces a solution to compute L-systems on parallel architectures like GPUs and multi-

core CPUs. Our solution can split the derivation of the L-system as well as the interpretation and

geometry generation into thousands of threads running in parallel. We introduce a highly parallel

algorithm for L-system evaluation that works on arbitrary L-systems, including parametric productions,

context sensitive productions, stochastic production selection, and productions with side effects. This

algorithm is further extended to allow evaluation of multiple independent L-systems in parallel. In

contrast to previous work, we directly interpret the productions defined in plain-text, without requiring

any compilation or transformation step (e.g., into shaders). Our algorithm is efficient in the sense that it

requires no explicit inter-thread communication or atomic operations, and is thus completely lock free.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Procedural modeling techniques to compute large and detailed
3D models have become very popular in recent years. This leads
to the question of how to handle the increasing memory
requirements for such models. The current trend is towards data
amplification directly on the GPU, for example tesselation of
curved surfaces specified by a few control points. This results in
low storage costs and allows generating the complex model only
when needed (i.e., when it is visible), while also reducing memory
transfer overheads. In the same vein, grammars can be viewed not
only as a modeling tool, but also as a method for data
amplification since a very short grammar description leads to a
detailed model.

In this paper we investigate whether it is possible to efficiently
evaluate one of the most classical procedural modeling primitives,
L-systems, directly on parallel architectures, exemplified by
current GPUs and multi-core CPUs. The main motivation is to
enable interactive editing of large L-systems (examples are shown
in Fig. 1) by designers, therefore it is important to speed up the
computation of L-systems in order to achieve low response times.

Although L-systems are parallel rewriting systems, derivation
through rewriting leads to very uneven workloads. Furthermore,
the interpretation of an L-system is an inherently serial
process. Thus, L-systems are not straightforwardly amenable to
parallel implementation. Previous work therefore focused on
specialized types of L-systems that do not allow side effects in

productions, which makes them very similar to scene graphs [3].
In contrast, we deal directly with uneven workloads in L-system
derivation, and we have identified two main sources of paralle-
lism in the interpretation of L-systems: (1) the associativity of
traversal in non-branching L-systems, and (2) the branching

structure itself in branching L-systems.
The main contribution of this paper is a highly parallel

algorithm for L-system evaluation that

� works on arbitrary L-systems, including parametric produc-
tions, context sensitive productions, stochastic production
selection, and productions with side effects
� works directly on an input string and a plain-text representa-

tion of the productions without requiring any compilation or
transformation step (e.g., into shaders)
� is efficient in the sense that it requires no explicit inter-thread

communication or atomic operations, and is thus completely
lock free
� parallelizes both within one L-system as well as among a large

number of L-systems

To our knowledge, this is the first L-system algorithm that is
highly parallel, i.e. utilizes thousands of threads in an efficient
manner. This is achieved by identifying and exploiting the
parallelism inherent in L-system derivation using parallel pro-
gramming primitives like scanning or work-queue management,
and a novel algorithm to explicitly resolve the branching
structure. We demonstrate that our algorithm outperforms a well
optimized single-core CPU implementation on larger L-systems.

This paper is an extended version of [5], adding support for
multiple L-systems as described in Section 6.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2010.05.014

� Corresponding author.

E-mail addresses: lipp@cg.tuwien.ac.at (M. Lipp), pwonka@gmail.com

(P. Wonka), wimmer@cg.tuwien.ac.at (M. Wimmer).

Computers & Graphics 34 (2010) 585–593

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.05.014
mailto:lipp@cg.tuwien.ac.at
mailto:pwonka@gmail.com
mailto:pwonka@gmail.com
mailto:wimmer@cg.tuwien.ac.at
dx.doi.org/10.1016/j.cag.2010.05.014


Overview: First we will provide a background on L-systems and
parallel primitives in Section 2. An analysis of the intrinsic
parallelism of L-systems is provided in Section 3. Then our system
consisting of two major building blocks will be described: (1) The
derivation step will start with the axiom and generate a long
string of modules (Section 4). (2) The interpretation step takes the
string as input and generates the actual geometry (Section 5). An
extension to support multiple independent L-systems in parallel
is shown in Section 6.

1.1. Previous work

General L-systems: Prusinkiewicz and Lindenmayer cover the
basic L-system algorithm [9]. Multiple extension to the basic
approach were introduced [10,11,7].

Parallelizing L-systems: Lacz and Hart showed how to use
manually written vertex and pixel shaders combined with a
render-to-texture loop to compute L-systems [3]. This concept
was later extended using automatically generated geometry
shaders [6]. Both methods require a shader compilation step for
the productions. Further a transformation step of every produc-
tion’s successor to a set of successors is needed to allow
independent parallel executions in a shader. For example, the

production L-aLf ½þL�Lf ½�L�L is transformed to the set

L-aL,af þL,afL,aff�L,aff�L,affL [3]. This is only valid if the
successor of L does not have any effect on the traversal state,
which is not generally the case.

An algorithm utilizing multiple processors (the results show
up to eight CPUs) with distributed memory, communicating using
the Message Passing Interface (MPI) was introduced [14]. In their
algorithm, the derivation of the L-system is performed using two
binary trees, a Growth-State Tree (GST) and a Growth-Manner
Tree (GMT). To actually render the system, the GST is interpreted
as a scene graph. In order to get global scene-graph transforma-
tion matrices needed for rendering in the individual threads, the
matrices are serially transferred from one process to the next.

Parallel computation in CUDA: In order to access the parallel
computing capabilities of GPUs we employ the NVIDIA CUDA
data-parallel programming framework [2]. Recent work shows
how to map computations having a highly dynamic nature to
CUDA. Most notably, algorithms to efficiently implement work-
load balancing using a compactation step were introduced in the
context of KD-trees [15], Reyes-style subdivision [8] and bound-
ing volume hierarchies construction [4]. Generalized stream
compaction was presented by Billeter et al. [1]. In the context of
tessellating parametric surfaces, scan operations were used in
order to scatter dynamically generated vertices to a VBO [12]. We
employ both work-load balancing and vertex scattering in our
work.

2. Background

Our work is based on L-systems and parallel processing
primitives. Both concepts will be explained in this section.

L-systems. In our work, we use the formalism of parametric L-
systems as introduced by Prusinkiewicz and Lindenmayer [9].
Parametric L-systems operate on parametric words, which are
strings of modules consisting of letters with associated actual

parameters. An L-system consists of a parametric word o called
the axiom, and a set of productions describing how the current
word is transformed. A production consists of a letter possibly
combined with formal parameters, called the predecessor and a
successor. The successor consists of a list of letters, where each
letter can have multiple arithmetic expressions containing formal
parameters. Formal parameters can be global or local to one
production rule. The real-valued actual parameters appearing in
the words are calculated from the arithmetic expressions of
formal parameters. The predecessor can also consist of several
letters, in which case the L-system is called context sensitive [9].

In the following example, F, A, and B are the letters defining
modules, gi are global parameters, l is a local parameter, and the
arrow separates the predecessor from successor:

FðlÞ-Aðl*g1Þ½Bðlþg2Þ�

To actually generate geometry, two distinct phases are
performed: A derivation phase generating a string of modules,
and an interpretation phase in which the string of modules is
interpreted in order to generate geometry.

Derivation: The derivation starts from the axiom. For every
module contained in the axiom, a matching production is
searched. A production matches a module m if the letter of the
predecessor matches the module letter, and the number of actual
parameters in the module equals the number of formal para-
meters in the production. We then apply the matching production
to the module: First, for every module in the successor, we
calculate the actual real-valued parameters from the arithmetic
expression of the formal parameters. Then we rewrite the module
m with the modules of the successor. One iteration consists in
rewriting all modules in the string in parallel using matching
productions [9]. A user-defined amount of iterations is performed
in order to get the final string of modules.

Interpretation: The interpretation is performed serially from the
start of the string, performing modifications of a turtle state based
on predefined turtle commands associated with specific letters [9].
The turtle state represents the position and orientation of a virtual
turtle. This state can be represented with a 4�4 matrix. The turtle
commands associated to letters modify the turtle state, for
example ‘F’ moves the turtle forward while drawing a line, or
‘+’ rotates the turtle. Most of these turtle commands can also be
expressed by a 4�4 matrix. A notable exception are the
commands ‘[’ and ‘]’, which push and pop the turtle state on a
stack, allowing the creation of branching (also called bracketed)
L-systems [9].

Parallel primitives. We extensively use the parallel scan

primitive in our work. Given an ordered set of values [a0,
a1,y,an] and an associative operator 3 with the identity element
I, an exclusive scan operation will result in the ordered set
½I,a0,a03a1, . . . ,a03a13 . . . 3an�1� [13]. If the operator is the addition,
this results in a set of values si with si ¼

Pi�1
j ¼ 0 aj. The main

advantage of the scan primitive is its capability to compute
seemingly serial operations very efficiently on highly parallel
hardware, since subsequences can be processed independently
due to associativity. Unless noted otherwise, we always refer to an
exclusive scan on integral values using the addition operator
when we use the term scan in our work.

Fig. 1. L-systems generated in real-time, at up to 198,000 modules per

millisecond: Hilbert 3D space-filling curve and 2D plant.

M. Lipp et al. / Computers & Graphics 34 (2010) 585–593586



Download English Version:

https://daneshyari.com/en/article/441625

Download Persian Version:

https://daneshyari.com/article/441625

Daneshyari.com

https://daneshyari.com/en/article/441625
https://daneshyari.com/article/441625
https://daneshyari.com

