Computers & Graphics 32 (2008) 500- 510

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag i

Sketch recognition in interspersed drawings using time-based

graphical models
T.M. Sezgin**, R. Davis®

2 College of Engineering, Ko¢ University, Saryer, Istanbul 34450, Turkey
> Massachusetts Institute of Technology, CSAIL, Cambridge, MA 02139, USA

ARTICLE INFO ABSTRACT

Article history:

Received 15 December 2007
Received in revised form

5 April 2008

Accepted 15 May 2008

Keywords:

Temporal sketch recognition
Dynamic Bayesian networks
User interfaces

Sketching is a natural mode of interaction used in a variety of settings. With the increasing availability
of pen-based computers, sketch recognition has gained attention as an enabling technology for natural
pen-based interfaces. Previous work in sketch recognition has shown that in certain domains the stroke
orderings used when drawing objects contain temporal patterns that can aid recognition. So far, systems
that use temporal information for recognition have assumed that objects are drawn one at a time. This
paper shows how this assumption can be relaxed to permit temporal interspersing of strokes from
different objects. We describe a statistical framework based on dynamic Bayesian networks that
explicitly models the fact that objects can be drawn interspersed. We present recognition results for
hand-drawn electronic circuit diagrams, showing that handling interspersed drawing provides a

significant increase in accuracy.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The activity of sketching is typically (and unconsciously) rather
stylized in the sense that people sketch in predictable ways. For
example, people typically draw enclosing objects first and use a
left-to-right stroke ordering when drawing symmetric objects.
There is psychological evidence attributing such ordering phe-
nomenon to motor convenience, part salience, hierarchy, geo-
metric constraints, planning and anchoring [1,2].

The existence of ordering patterns during drawing is signifi-
cant from a recognition perspective, because, as has been
demonstrated in a variety of domains, stroke orderings can be
used to aid recognition [3-6]. All previous systems, however,
make certain assumptions that limit the complexity of the inputs
they can accommodate. One system, for example, assumes the
scene contains only one object, drawn in a single stroke [4]. Other
systems allow recognition in scenes with multiple objects with
the restriction that objects or complete object components are
drawn using a single stroke [3]. Another approach allows scenes
with multiple objects and objects consisting of multiple strokes,
but assumes that no objects share strokes [5]. A more recent
framework allows stroke sharing under certain conditions and

* Corresponding author. +447748 727917; fax: +441223 334678.
E-mail addresses: mts33@cl.cam.ac.uk, mtsezgin@csail.mit.edu (T.M. Sezgin),
davis@csail.mit.edu (R. Davis).

0097-8493/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2008.05.008

shows how common stroke orderings as well as object orderings
can be used for recognition [6].

Even so, one key assumption that all these systems make about
free-hand drawing is that people complete each object before
moving on to draw the next. Yet real-world data shows this to be
untrue. For example, our analysis of free-hand analog electronic
circuit diagrams collected from electrical engineers shows it is not
uncommon for people to start drawing a new object before
completing the current one. This drawing behavior, which we call
interspersed drawing, occurs in other domains as well [7]. The
ability to deal with interspersed drawing is recognized as a major
task that sketch recognizers should support [7]. This paper is
focused on this issue, and shows how stroke ordering information
can be used for sketch recognition in presence of interspersed
drawing. Additional key features of our recognition framework
include its ability to learn various kinds of temporal patterns from
data, the ability to handle multi-stroke objects and multi-object
strokes, and support for continuous observable features.

We formally define the sketch recognition task and describe
the interspersed drawing phenomena. In Section 3, we describe a
recognition framework based on dynamic Bayesian networks
(DBNs) that models online sketching as a stochastic process
employing specialized constructs called switching parents.
Section 4 reports evaluation results showing that a significant
percentage of misrecognitions in interspersed drawings can be
avoided by explicitly modeling interspersed drawing behavior. We
conclude with a broader discussion of the related work and point
out possible future directions.

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.05.008
mailto:mts33@cl.cam.ac.uk,
mailto:mtsezgin@csail.mit.edu
mailto:davis@csail.mit.edu

T.M. Sezgin, R. Davis / Computers & Graphics 32 (2008) 500-510 501

2. Problem definition

Informally, the goal of sketch recognition is to segment digital
ink drawn by the user, and then classify it by labeling it as one or
more of the objects in the domain. We focus here on the domain of
hand-drawn electronic circuit diagrams, but our recognition
algorithm is not specific to this domain. Objects in this domain
are wires, resistors, capacitors, npn-transistors and batteries.

2.1. Terminology

We adopt the terminology and notation used in [6]. A sketch
& =51,55,...,Sy is defined as a sequence of strokes captured
using a digitizer, preserving the drawing order. A stroke is a set of
time-ordered points sampled between pen-down and pen-up
events. Each stroke is broken into geometric objects (e.g., lines,
arcs) called primitives as part of the preprocessing of the sketch.!
Let # = Pi.r =P1,P,,...,Pr be the sequence of time-ordered
primitives obtained from sketch ., and ¢ = 04, 0,, ..., Ot be the
sequence of observations (feature vectors) obtained from the
primitives.

We use segmentation to refer to the task of grouping together
primitives constituting the same object. Given a set of classes
% = {Cq,Ca,...,Cp}, classification refers to the task of determining
which object each group of primitives represents (e.g., a stick-
figure). Segmentation produces K groups G = Gy,Go,...,Gg, and
classification gives us the labels for the groups L = Li,L,,...,Lg,
L; € €. Each group is defined by the indices of the primitives
included in the group G; = p;, 5, ..., p,, sorted in ascending order.

We define sketch recognition as the segmentation and classi-
fication of a sketch. A simplifying assumption in most sketch
recognition systems is that a stroke can be part of only one object.
Our definition of segmentation in terms of grouping primitives is
more general than a definition based on grouping strokes. By
defining segmentation as grouping primitives, we prohibit
primitives from being shared across objects, but allow a stroke
(which can be composed of multiple primitives) to be part of
multiple objects (e.g., using a single stroke to draw a resistor and
the wires on either side of it).

We use interspersing to mean to the situation where the user
starts drawing one object but draws one or more other objects
before the first is completed. For example, Fig. 1 shows a circuit
fragment in which two wires (#3 and #6) are interspersed with
the transistor.

More formally, suppose we have two objects .«Z and 4. Assume
the primitive indices for the proper grouping of primitives
forming .« and # are G, = py,p0,,....py and Gz = p), p5,...,
py- We say that o7 is interspersed with # if p, <pj<p,, for 1<i<n
and |G|+ |Gyl = p,, — p; + 1. The model we present is in fact
able to handle a more general case of interspersing where .7 is
interspersed with multiple objects.

2.2. Desired features of a model

The main feature of our model is its ability to handle
interspersed drawing behavior. However, we also support five
features identified as important in previous work.

2.2.1. Learning stroke-level and object-level patterns
Stroke orderings used in the course of drawing individual
objects naturally contain certain patterns. For example, when

1 Because our domain does not have objects with curves, we work only with
line segments. However, our model is general, and supports features computed
from any kind of primitive.

9 10

Fig. 1. A diagram illustrating interspersing: The user draws two other objects
(wires made from primitives #3 and #6) over the course of drawing the transistor
(primitives #2, #4, #5, #7, #8). Numbers indicate the primitive drawing order.

drawing arrows, one frequently seen temporal pattern is a long
line (the shaft) followed by two shorter lines (parts of the arrow
head). These are called stroke-level patterns because they capture
the probability of seeing a particular sequence of strokes with
certain properties when sketching an object [6].

Another kind of temporal pattern present in online sketches is
an object-level pattern that captures the probability of seeing a
certain sequence of objects being drawn [6]. For example, when
people draw box-connector diagrams (e.g., organizational charts,
linked lists), boxes are typically drawn before connectors.

Our system learns both stroke-level and object-level temporal
patterns of a domain from examples and uses them in recognition.

2.2.2. Handling multi-stroke objects and variations in encoding
length

Users should be able to draw freely. For example, they should
be able to draw a square using one, two, three or four strokes, or
draw a resistor with different numbers of humps (thus generating
encodings of the input with different numbers of observations).
We achieve this by explicitly modeling whether the user has
finished drawing an object.

2.2.3. Support for multiple drawing orders

We should be able to accommodate multiple drawing orders
instead of just one. For example, it should be possible to draw a
square starting with either horizontal or vertical lines. Further-
more, the system ought to learn about the user, learning for
example whether the user uses one drawing order more
frequently than others. This requires training and classification
methods that can use such information. We achieve this by
adopting a probabilistic machine learning framework where
parameters are estimated to capture the statistics of the training
data.

2.2.4. Probabilistic matching score

We would like the result of matching an observation sequence
against a model to be a continuous value reflecting the likelihood
of using that particular drawing order for drawing that object. This
is required if we are to have a mathematically sound framework
for combining the outputs of multiple matching operations for
scenes with multiple objects such that, among plausible inter-
pretations, those corresponding to more frequently used orders

Download English Version:

https://daneshyari.com/en/article/441653

Download Persian Version:

https://daneshyari.com/article/441653

Daneshyari.com

https://daneshyari.com/en/article/441653
https://daneshyari.com/article/441653
https://daneshyari.com

