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Abstract

A bivariate rational interpolation surface based on function values has been constructed in the authors’ earlier works. This paper deals

with the convexity control of interpolating surfaces. The sufficient and necessary conditions for interpolating surfaces to be convex

are derived. The convexity of the interpolating surface can be changed locally by selecting suitable parameters under the condition

that the interpolation data are not changed. Examples are given to show how the parameters can be chosen and the shapes of the

surfaces changed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The construction methods of curves and surfaces are key
issues in computer-aided geometric design (CAGD). There
are many ways to tackle this problem [1–6], for example,
the spline method, the Non-Uniform Rational B-Spline
(NURBS) method, the Bézier method and others. These
methods are effective and applied widely in the shape
design of industrial products. In order to meet the needs of
the ever-increasing model complexity and to incorporate
manufacturing requirements, shape control becomes an
ever more important task in constructing curves and
surfaces, such as convexity control, positivity control,
monotone control, etc.

Spline interpolation is a useful and powerful tool in
CAGD, such as the polynomial spline, the triangular
spline, the b-spline, the Box spline, the vertex spline and
others [1–3,6]. There are many publications contributing to
the shape preserving property of interpolating curve and
surface [10–19], but only a few methods for shape control
[7–9]. This is because of the global property of the
interpolation, which means if impossible for a local
modification to take place under the condition that the

given interpolating data are not changed. In fact, there are
some methods for preserving positivity or preserving
convexity in the design of surfaces [11,12,14,15], but there
are few modification methods to control the shape of the
interpolating surface under the condition that the inter-
polating data are not changed [20,21]. This is because of
the uniqueness of the interpolation to the interpolating
data. In recent years, the univariate rational spline
interpolation with parameters has been constructed
[8,9,17–19,22]. These kinds of interpolation spline have a
simple mathematical representation, and they can be used
not only for shape preserving [3,20,21,23], but also for the
modification of local curves, such as region control and
convexity control [8,9,22], by selecting suitable parameters
under the condition that the interpolating data are not
changed. In this case, the uniqueness of the interpolating
curves for the given interpolating data becomes the
uniqueness of the interpolating curves for the given
interpolating data and the parameters.
Motivated by the univariate rational spline interpola-

tion, bivariate rational interpolation with parameters based
on the function values has been studied in [20]. The
interpolation function has a piecewise explicit rational
mathematical representation with parameters, and it can be
represented by its basis. Since there are parameters in the
interpolation function, the interpolating surface varies as
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the parameters change. So, the variation of the parameters
makes the modification of the interpolating surface
possible under the condition that the interpolation data
are not changed. This is the main advantage of the rational
spline with parameters. For example, when a patch of the
interpolating surface is too high or too low at a given point
and at its neighbourhood, by adjusting these parameters,
the surface can be constrained to be ‘‘down’’ or ‘‘up’’, so
the shape of the interpolating surface can be modified to
the desired shape. Ref. [21] gives such a method, a point
control method, for the ‘‘down-up’’ control of interpolat-
ing surfaces. This paper will deal with the convexity control
method to modify the convexity of the interpolating
surface based on the definition of the surface’s convexity
defined by the Gauss curvature.

This paper is arranged as follows. In Section 2, the
bivariate rational interpolation based on the function
values will be restated. Section 3 deals with the convexity
control of interpolating surfaces. The sufficient and
necessary conditions for the interpolating surfaces to be
convex are derived. Based on this, suitable parameters can
be chosen automatically to ensure the interpolating patch is
convex. In Section 4, examples are given to show this
control method.

2. Interpolation

Let O : ½a; b; c; d� be the plane region, let f ðx; yÞ be
a bivariate function defined in the region O and let
a ¼ x1ox2o � � �oxnoxnþ1 ¼ b and c ¼ y1oy2o � � �o
ymoymþ1 ¼ d be the knot sequences. Denote f ðxi; yjÞ

by f i;j, then fðxi; yj ; f i;jÞ; i ¼ 1; 2; . . . ; n; nþ 1; j ¼ 1; 2; . . . ;
m;mþ 1g are the given set of data points. For any point
ðx; yÞ 2 ½xi;xiþ1; yj ; yjþ1� in the xy-plane, let hi ¼ xiþ1 � xi,
y ¼ ðx� xiÞ=hi, and lj ¼ yjþ1 � yj, Z ¼ ðy� yjÞ=lj . For each
y ¼ yj ; j ¼ 1; 2; . . . ;mþ 1, construct the x-direction inter-
polant curve [8]; this is given by

P�i;jðxÞ ¼
p�i;jðxÞ

q�i;jðxÞ
; x 2 ½xi;xiþ1�; i ¼ 1; 2; . . . n� 1, (1)

where

p�i;jðxÞ ¼ ð1� yÞ3ai;j f i;j þ yð1� yÞ2V�i;j þ y2ð1� yÞW �
i;j

þ y3f iþ1;j,

q�i;jðxÞ ¼ ð1� yÞai;j þ y,

and

V�i;j ¼ ðai;j þ 1Þf i;j þ ai;j f iþ1;j,

W �
i;j ¼ ðai;j þ 2Þf iþ1;j � hiD�iþ1;j,

with ai;j40; and D�i;j ¼ ðf iþ1;j � f i;jÞ=hi. This interpolation is
called the rational cubic interpolation based on function
values which satisfies

p�i;jðxiÞ ¼ f i;j ; p
�
i;jðxiþ1Þ ¼ f iþ1;j ; p

�0

i;jðxiÞ

¼ D�i;j ; p
�0

i;jðxiþ1Þ ¼ D�iþ1;j.

Obviously, the interpolation is a local one, it is defined in
the interval ½xi;xiþ1� and depends on the data at three
points fðxr; yj ; f r;jÞ; r ¼ i; i þ 1; i þ 2g and the parameter ai;j.
For each pair ði; jÞ; i ¼ 1; 2; . . . ; n� 1 and j ¼ 1; 2; . . . ;

m� 1, using the x-direction interpolation function P�i;jðxÞ,
define the bivariate rational interpolating function Pi;jðx; yÞ
on ½xi;xiþ1; yj ; yjþ1� as follows [20]:

Pi;jðx; yÞ ¼
pi;jðx; yÞ

qi;jðyÞ
; i ¼ 1; 2; . . . n� 1; j ¼ 1; 2; . . . ;m� 1,

(2)
where

pi;jðx; yÞ ¼ ð1� ZÞ3bi;jP
�
i;jðxÞ þ Zð1� ZÞ2Vi;j

þ Z2ð1� ZÞW i;j þ Z3P�i;jþ1ðxÞ,

qi;jðyÞ ¼ ð1� ZÞbi;j þ Z,
and

V i;j ¼ ðbi;j þ 1ÞP�i;jðxÞ þ bi;jP
�
i;jþ1ðxÞ,

W i;j ¼ ðbi;j þ 2ÞP�i;jþ1ðxÞ � ljDi;jþ1ðxÞ,
with bi;j40; and Di;jðxÞ ¼ ðP

�
i;jþ1ðxÞ � P�i;jðxÞÞ=lj.

The function Pi;jðx; yÞ is defined in the subregion
½xi;xiþ1; yj ; yjþ1� and depends on the data at nine points
fðxr; ys; f r;sÞ; r ¼ i; i þ 1; i þ 2; s ¼ j; j þ 1; j þ 2g; it is called
the bivariate rational interpolating function based on
function values which satisfy

Pi;jðxr; ysÞ ¼ f ðxr; ysÞ; r ¼ i; i þ 1; s ¼ j; j þ 1.

It was proved in [20] that when the parameters bi;j is
constant, for each j 2 f1; 2; . . . ;m� 1g and all i ¼

1; 2; . . . ; n� 1, the interpolating function Pi;jðx; yÞ; i ¼
1; 2; . . . ; n; j ¼ 1; 2; . . . ;m must be C1 continuous in the
whole interpolating region ½x1; xn; y1; ym�. In what follows,
consider the equally spaced knots case, namely, for all i ¼

1; 2; . . . ; n and j ¼ 1; 2; . . . ;m, hi ¼ hj and li ¼ lj. Assume
bi;j is constant for each j 2 f1; 2; . . . ;m� 1g and all
i ¼ 1; 2; . . . ; n� 1; denote it by bj . Assume ai;j is constant
for each i 2 f1; 2; . . . ; n� 1g and all j ¼ 1; 2; . . . ;m� 1, and
denote it by ai. Under the conditions above, the
interpolating function Pi;jðx; yÞ is C1 continuous in the
whole interpolating region, and the interpolating function
P�i;jðxÞ defined by (1) can be rewritten as

P�i;jðxÞ ¼ o0ðy; aiÞf i;j þ o1ðy; aiÞf iþ1;j þ o2ðy; aiÞf iþ2;j,

where

o0ðy; aiÞ ¼
ð1� yÞ2ðai þ yÞ
ð1� yÞai þ y

,

o1ðy; aiÞ ¼
yð1� yÞai þ 3y2 � 2y3

ð1� yÞai þ y
,

o2ðy; aiÞ ¼
�y2ð1� yÞ
ð1� yÞai þ y

,

and

X2
r¼0

orðy; aiÞ ¼ 1.
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