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Abstract

We present a family of unimodal maps, arising from a simple queueing model, which exhibits reverse bifurcations. We compare and
contrast this with bifurcations occurring in the well-known logistic family of unimodal quadratic maps. Throughout this study, graphics

generated via numerical simulations provide key insights.
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1. Introduction

In a recent paper in this journal [1], Frame and Meachem
presented computer experiment graphics in which a quartic
family of one-dimensional maps exhibited reverse bifurca-
tions. In particular, tangent and period-doubling bifurca-
tions, well-known to occur in the logistic family [2], appear
in this quartic family with both forward and reverse
orientations. In this paper we present a unimodal (or one-
hump) one-dimensional map, derived from a simple
queueing model, which exhibits bifurcations akin to
those found in the study of the quartic family. Interest-
ingly, reverse bifurcations occur in mappings much less
topologically sophisticated than a three-hump quartic
function.

2. Bifurcations

The road to chaos for one-dimensional maps often
follows a sequence of period-doubling bifurcations as a
parameter increases, as illustrated by the logistic family
Li(x) = kx(1 — x). It is easy to check that if k£ € [0, 4], then
for any xq € [0, 1], Li(xo) € [0, 1]. For such k, the orbit of
X0, defined to be the set 1 (xy) = {x0,x1 = Li(x0),
xy = Lg(x)),...}, remains bounded within [0, 1]. Of interest
is how orbits " (xo) change as the parameter k increases.
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The simplest way to proceed is via the study of graphics
generated by computer simulation. Indeed, the use of such
graphics has played, and continues to play, a major role in
the study of iteration of families of mappings. In Fig. 1 we
plot the long-term behavior of ¢ (0.5) versus k. That is, for
a given k, we compute the first 200 terms in ¢*(0.5), then
plot iterates 101-200 vertically above k. The resulting plot
is called an orbit diagram. The choice of xo = 0.5is due to a
result of Singer [3], which states that for a map having
negative Schwarzian derivative, any attracting periodic
behavior must draw in the orbit of a critical point. One can
show L; has negative Schwarzian derivative, with xo = 0.5
its sole critical point.

As this remarkable diagram is discussed at length in [1],
we focus here on the two types of bifurcations which
occur within. Note that for k slightly less than 3, ¢0*(0.5)
converges to a stable fixed point (depending on k). A fixed
point is a point of intersection of the graph of L; and the
line y = x; it is stable if it attracts orbits which start nearby.
As proven in [2], a fixed point x = p is stable if |L; (p)| <1.
A period n-point x =¢q is a fixed point of the n-fold
composition L}(x), and it is stable if |(L})(¢)|<1. The
orbit of a period n-point is called an n-cycle. An orbit
which starts sufficiently close to any point in a stable
n-cycle will limit on that period-n behavior over time.

For k slightly larger than 3, ¢0*(0.5) converges to a stable
2-cycle. This period-doubling bifurcation as k increases
through 3 is illustrated in Fig. 2. Note that the fixed point
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Fig. 1. Top: The orbit diagram for the logistic map. Bottom: The portion of the orbit diagram for 3.72<k<3.88. Note the period-5 and period-3

“windows”.

x = py changes from stable to unstable (that is, |Lj(p,)| > 1
so that orbits which start nearby move away). As k
continues to increase, a stable 4-cycle appears via a period-
doubling bifurcation of the function L,zc(x), followed by a
stable 8-cycle arising in a period-doubling bifurcation of
the function Lj(x), and so on. These period-doublings
continue until k£ &~ 3.57, where chaos first appears.

The second type of bifurcation occurring in the logistic
family is a tangent bifurcation. Note the 3-cycle appearing
out of the chaotic morass in Fig. 1. The function Li(x)
undergoes a tangent bifurcation at k ~ 3.828, as illustrated
in Fig. 3. Thus, L; progresses from having no 3-cycles, to
one 3-cycle, and then to a stable—unstable pair of 3-cycles
as k increases through 3.828.

It is quite fun investigating the plot in Fig. 1 by zooming
in on various regions—it is indeed a surprisingly rich

diagram. Regardless of how you search, however, you
will find only period-doubling and tangent bifurcations.
In addition, once a cycle is created it persists, though
it changes from stable to unstable as discussed above.
That this is the case follows from work of Milnor and
Thurston [4]. That this need not be the case for quartic
maps is the substance of [1]. In the following we present a
unimodal map with period-doubling, tangent and reverse
bifurcations similar to those found in the quartic family.
Here, unimodal means that the map has one critical
point ¢, and is either increasing for x<c¢ and decreasing
for x>c¢, or vice versa. Note that while all quadratic
maps are unimodal, a unimodal map need not be
quadratic.

Interestingly, our unimodal map arises in a simple
queueing model [5].
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