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Abstract

We present a family of unimodal maps, arising from a simple queueing model, which exhibits reverse bifurcations. We compare and

contrast this with bifurcations occurring in the well-known logistic family of unimodal quadratic maps. Throughout this study, graphics

generated via numerical simulations provide key insights.
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1. Introduction

In a recent paper in this journal [1], Frame and Meachem
presented computer experiment graphics in which a quartic
family of one-dimensional maps exhibited reverse bifurca-
tions. In particular, tangent and period-doubling bifurca-
tions, well-known to occur in the logistic family [2], appear
in this quartic family with both forward and reverse
orientations. In this paper we present a unimodal (or one-
hump) one-dimensional map, derived from a simple
queueing model, which exhibits bifurcations akin to
those found in the study of the quartic family. Interest-
ingly, reverse bifurcations occur in mappings much less
topologically sophisticated than a three-hump quartic
function.

2. Bifurcations

The road to chaos for one-dimensional maps often
follows a sequence of period-doubling bifurcations as a
parameter increases, as illustrated by the logistic family
LkðxÞ ¼ kxð1� xÞ. It is easy to check that if k 2 ½0; 4�, then
for any x0 2 ½0; 1�; Lkðx0Þ 2 ½0; 1�. For such k, the orbit of
x0, defined to be the set Oþðx0Þ ¼ fx0;x1 ¼ Lkðx0Þ;
x2 ¼ Lkðx1Þ; . . .g, remains bounded within ½0; 1�. Of interest
is how orbits Oþðx0Þ change as the parameter k increases.

The simplest way to proceed is via the study of graphics
generated by computer simulation. Indeed, the use of such
graphics has played, and continues to play, a major role in
the study of iteration of families of mappings. In Fig. 1 we
plot the long-term behavior of Oþð0:5Þ versus k. That is, for
a given k, we compute the first 200 terms in Oþð0:5Þ, then
plot iterates 101–200 vertically above k. The resulting plot
is called an orbit diagram. The choice of x0 ¼ 0:5 is due to a
result of Singer [3], which states that for a map having
negative Schwarzian derivative, any attracting periodic
behavior must draw in the orbit of a critical point. One can
show Lk has negative Schwarzian derivative, with x0 ¼ 0:5
its sole critical point.
As this remarkable diagram is discussed at length in [1],

we focus here on the two types of bifurcations which
occur within. Note that for k slightly less than 3, Oþð0:5Þ
converges to a stable fixed point (depending on k). A fixed

point is a point of intersection of the graph of Lk and the
line y ¼ x; it is stable if it attracts orbits which start nearby.
As proven in [2], a fixed point x ¼ p is stable if jL0kðpÞjo1.
A period n-point x ¼ q is a fixed point of the n-fold
composition Ln

kðxÞ, and it is stable if jðLn
kÞ
0
ðqÞjo1. The

orbit of a period n-point is called an n-cycle. An orbit
which starts sufficiently close to any point in a stable
n-cycle will limit on that period-n behavior over time.
For k slightly larger than 3, Oþð0:5Þ converges to a stable

2-cycle. This period-doubling bifurcation as k increases
through 3 is illustrated in Fig. 2. Note that the fixed point
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x ¼ pk changes from stable to unstable (that is, jL0kðpkÞj41
so that orbits which start nearby move away). As k

continues to increase, a stable 4-cycle appears via a period-
doubling bifurcation of the function L2

kðxÞ, followed by a
stable 8-cycle arising in a period-doubling bifurcation of
the function L4

kðxÞ, and so on. These period-doublings
continue until k � 3:57, where chaos first appears.

The second type of bifurcation occurring in the logistic
family is a tangent bifurcation. Note the 3-cycle appearing
out of the chaotic morass in Fig. 1. The function L3

kðxÞ

undergoes a tangent bifurcation at k � 3:828, as illustrated
in Fig. 3. Thus, Lk progresses from having no 3-cycles, to
one 3-cycle, and then to a stable–unstable pair of 3-cycles
as k increases through 3.828.

It is quite fun investigating the plot in Fig. 1 by zooming
in on various regions—it is indeed a surprisingly rich

diagram. Regardless of how you search, however, you
will find only period-doubling and tangent bifurcations.
In addition, once a cycle is created it persists, though
it changes from stable to unstable as discussed above.
That this is the case follows from work of Milnor and
Thurston [4]. That this need not be the case for quartic
maps is the substance of [1]. In the following we present a
unimodal map with period-doubling, tangent and reverse
bifurcations similar to those found in the quartic family.
Here, unimodal means that the map has one critical
point c, and is either increasing for xoc and decreasing
for x4c, or vice versa. Note that while all quadratic
maps are unimodal, a unimodal map need not be
quadratic.
Interestingly, our unimodal map arises in a simple

queueing model [5].
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Fig. 1. Top: The orbit diagram for the logistic map. Bottom: The portion of the orbit diagram for 3:72pkp3:88. Note the period-5 and period-3

‘‘windows’’.
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