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Abstract

Fractals are an integral part of many computer graphics applications. Relatively simple implementations of fractal

modeling result in an infinite number of complex and attractive images. The subject of fractal image generation is well

covered in the literature. Many fractal models are based on a raster representation, which is rather inconvenient for

interactive modeling and implementation in 3D graphics. On the other hand, vector-geometry models are very popular

in commercial graphics design packages. This creates a demand for vector representation of fractal models. The paper

introduces the iterated function systems (IFS) vector-based model along with the supporting rendering algorithm. The

solution offers high performance and modeling flexibility. IFS, when combined with vector graphics, offer new forms of

artistic expression.
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1. Introduction

The works of Barnsely have often focused on

applications of affine transformations in fractal model-

ing and fractal image compression. These iterated

function systems (IFS) have been thoroughly studied,

especially for two-dimensional (2D) binary and gray-

scale image representations [1–4]. Programs generating

raster images of various 2D IFS fractals are widely

available [5]. The IFS description provides a useful

method for researching image shape and texture. It

forms, through a set of simple geometric transforma-

tions, a basic set of tools for interactive image

construction. The 2D binary IFS is the most classic

raster implementation of the IFS. Vector-based fractal

models are better known from work on PL systems

[6], which are used to generate models of plants and

simple creatures such as snails and worms. This paper

describes a useful vector representation applied to the

IFS. This has the advantage that the vector objects

generated can be described by normals; thus, it is

possible to apply lighting and shadows. It is also

possible to include fractal objects in 3D modeling

packages.

2. Background

IFS are based on mathematical foundations laid by

Hutchinson [1]. IFS fractals have an elegant recursive

definition—a fractal is constructed from a collage of

transformed copies of itself; it is inherently self-similar

and infinitely scaleable. The transformation is per-

formed by a set of affine maps. An affine mapping of

the plane is a combination of rotation, scaling, sheer,

and translation in R2. Any affine transformation
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where ðx; yÞðx0; y0Þ 2 R2 are any points on a plane.

We can say that an IFS on the plane is given by a

finite collection of affine transformations acting on a

metric space. There are no particular conditions

imposed upon the maps except their contraction. A set

of affine transformations (Eq. (1)) is accompanied by

respective contraction factors s. It is relatively easy to

estimate such factors for 2D linear IFS. However, the

situation is not trivial when considering other cases, such

as nonlinear IFS. An essential feature of an IFS is its

unique attractor set A, the fractal, which is closed and

bounded [1].

Definition 1. If an IFS O ¼ {F,(oi); i ¼ 1, 2,y, N} is

contractive, there exists a unique set

A ¼ oðAÞ ¼
[N
i¼1

oiðAÞ (2)

called the fixed point (the attractor) of O.

IFS can be treated as a subset of general dynamical

systems that can have fixed points often associated with

strange attractors. If we keep the contraction factors

close to 1.0, we can observe that the IFS behave like a

classical nonlinear system. For clearly defined attractors,

we need to keep all contraction rations below 1.0, where

max{si, i ¼ 1,y, N}o1.0. Such an IFS is called a

hyperbolic IFS.

3. Vector IFS model

The IFS rendering algorithms usually operate on

points or sets of points that may represent flat images or

volumetric spaces. The authors of the Tesseral Synec-

doche algorithm suggested that it is possible to insert

non-scaling parameters to IFS codes, thus making

possible further developments [7]. The vector recursive

rendering (VRR) algorithm (described in the next

section) exploits recursive function calls applied to

transform a spatial vector [8]. The vector can be

described either by a co-ordinate and angles, or by a

pair of point co-ordinates in space.

The main idea is to transform only the two points that

define the vector. The recursive process changes both the

location and orientation of pairs of points. Because

hyperbolic IFS contract all points, the pair defining a

vector needs normalization after each mapping. The

vectors are easy to calculate and, once obtained, they

can be attached to any vector computer-graphics model,

including those that make use of constructive solid

geometry (CSG) primitives.

4. VRR algorithm

The VRR algorithm on a plane can be described by a

pseudo-code as follows:

Choose two initial pixel values q0(x0,y0),q1(x1,y1)

Choose the max_no_of_recursions L

Procedure VRR(q0(x0,y0),q1(x1,y1),L)

Begin

For i ¼ 1 to N do

Begin

Apply q2 ¼ wi(q0)

Apply q3 ¼ wi(q1)

If L ¼ ¼ 0 then Apply Plot_line(Normali-

ze(q2,q3))

Else call VRR(q2,q3,L–1)

End for i

End

The VRR is a classic recursive algorithm. It termi-

nates when the current level of recursion L is equal to

zero. The VRR algorithm is initially called with

parameters VRR[(0,0),(1,1),10]—in other words, a

recursive call to the function VRR with a sample initial

parameters (x1,y1),(x2,y2) and maximum level of recur-

sion. It is also possible to extend this representation to

any vector in a 3D space. The VRR algorithm

approaches the IFS attractor rapidly and in a finite time.

We can estimate the max_no_of_recursions L for a

given IFS codes, but its sense is a bit different for vector

objects. The main difference from raster image rendering

algorithms is that we do not operate on points in space

but on a vector to be attached to any computer-graphics

object (a circle, a triangle, a cube or a CSG solid). All

computer-graphics objects have sizes larger than one

pixel; therefore, it is enough to apply only a dozen steps

of the recursive algorithm in order to obtain interesting

results (Fig. 1) [9].

There is a problem with the simplest implementation

of the VRR algorithm (without the normalization

process). We know that a hyperbolic IFS is contractive,

thus all points become closer with each recursive

mapping. We have to implement a normalization

process (denoted in pseudocode by the function Normal-

ize) in order to achieve the uniform size for all vectors at

each step of recursive iteration (Fig. 2). We can

introduce a scaling factor sf that negates the contraction

of two points in the space (q0,q1). sf is used to normalize

the vectors at each level of recursive rendering.

For q0 represented by a pair (x0,y0), and q1
represented by a pair (x1,y1), on a plane (co-ordinates
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