
Special Section on Expressive 2015

Advanced drawing beautification with ShipShape

Jakub Fišer a,n, Paul Asente b, Stephen Schiller b, Daniel Sýkora a

a Czech Technical University in Prague, FEE, Czech Republic
b Adobe Research, United States

a r t i c l e i n f o

Article history:
Received 3 October 2015
Received in revised form
21 January 2016
Accepted 17 February 2016
Available online 3 March 2016

Keywords:
Drawing system
Input beautification
Vector graphics
Visual feedback

a b s t r a c t

Sketching is one of the simplest ways to visualize ideas. Its key advantage is its easy availability and
accessibility, as it require the user to have neither deep knowledge of a particular drawing program nor
any advanced drawing skills. In practice, however, all these skills become necessary to improve the visual
fidelity of the resulting drawing. In this paper, we present ShipShape—a general beautification assistant
that allows users to maintain the simplicity and speed of freehand sketching while still taking into
account implicit geometric relations to automatically rectify the output image. In contrast to previous
approaches ShipShape works with general Bézier curves, enables undo/redo operations, is scale inde-
pendent, and is fully integrated into Adobe Illustrator. We show various results to demonstrate the
capabilities of the proposed method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sketching with a mouse, tablet, or touch screen is an easy and
understandable way to create digital content, as it closely mimics
its real-world counterpart, pen and paper. Its low demands make
it widely accessible to novices and inexperienced users. However,
its imprecision means that it is usually only used as a preliminary
draft or a concept sketch. Making a more polished drawing
requires significantly more time and experience with the drawing
application being used. Furthermore, when working with drawing
or sketching software, users are often forced to switch between
different drawing modes or tools or to memorize cumbersome
shortcut combinations.

While we do not question the necessity or usefulness of complex
tools to achieve non-trivial results, we argue that for certain scenarios,
such as geometric diagram design or logo study creation, the inter-
active beautification [1] approach is more beneficial. Such workflows
retain the intuitiveness of freehand input while benefiting from an
underlying algorithm that automatically rectifies strokes based upon
their geometric relations, giving them more formal appearance. With
the quickly growing popularity of touch-enabled devices, the applic-
ability of this approach expands greatly. However, whatever the
potential of automatic beautification in a more general sketching
context, most of the existing applications focus on highly structured
drawings like technical sketches.

One of the biggest challenges in drawing beautification is
resolving ambiguity of the user input, since the intention and its
execution are often considerably dissimilar. Additionally, this issue
becomes progressively more complex as the number of primitives
present in the drawing increases.

In this paper, we present a system for beautifying freehand
sketches that provides multiple suggestions in spirit of Igarashi
et al. [1]. Strokes are processed incrementally (see Fig. 2) to pre-
vent the combinatorial explosion of possible outputs. Unlike pre-
vious work, our approach supports polycurves composed of gen-
eral cubic Bézier curves in addition to simple line segments and
arcs. The system is scale-independent, and can easily be extended
by new operations and inferred geometric constraints that are
quickly evaluated and applied. The algorithm was integrated into
Adobe Illustrator, including undo/redo capability. We present
various examples to demonstrate its practical usability (Fig. 1).

2. Related work

The need to create diagrams and technical drawings that satisfy
various geometric constraints led to the development of complex
design tools such as CAD systems. However, these systems' com-
plexity often limits their intuitiveness. Pavlidis and Van Wyk [2] were
one of the first to try to alleviate this conflict by proposing a method
for basic rectification of simple rectangular diagrams and flowcharts.
However, their process became ambiguous and prone to errors when
more complex drawings were considered, since the method needed
to drop many constraints to keep the solution tractable.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2016.02.003
0097-8493/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: fiserja9@fel.cvut.cz (J. Fišer).

Computers & Graphics 56 (2016) 46–58

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.02.003
http://dx.doi.org/10.1016/j.cag.2016.02.003
http://dx.doi.org/10.1016/j.cag.2016.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.02.003&domain=pdf
mailto:fiserja9@fel.cvut.cz
http://dx.doi.org/10.1016/j.cag.2016.02.003


To alleviate this limitation, Igarashi et al. [1] proposed an inter-
active beautification system in which the user added strokes one by
one and the system improved the solution incrementally while
keeping the previously processed drawing unchanged. This solution
kept the problem tractable even for very complex drawings. More-
over, the system also presented several beautified suggestions and let
the user pick the final one. This brought more user control to the
whole beautification process. Following a similar principle, other
researchers developed systems for more specific scenarios such as the
interactive creation of 3D drawings [3], block diagrams [4,5], forms [6],
and mathematical equations [7].

However, a common limitation of the approaches mentioned
above is that they treat the image as a set of line segments. To
alleviate this drawback Paulson and Hammond [8] proposed a
system called PaleoSketch that fit the user input to one of eight
predefined geometric shapes, such as line, spiral or helix. In a
similar vein, Murugappan et al. [9] and Cheema et al. [10] allowed
line segments, circles and arcs.

Related to drawing beautification, there are also approaches to
beautify curves independently, without considering more complex
geometric relationships. Those approaches are orthogonal to our
pipeline. They use either geometric curve fitting [11,12] or some
example-based strategy [13,14]. Additionally, advanced methods
for vectorizing and refining raster inputs have been proposed
[15,16], which enable users to convert bitmap images into high
quality vector output. However these do not exploit inter-stroke
relationships. In our case we assume that the built-in curve
beautification mechanism of Adobe Illustrator preprocesses the
user's rough input strokes into smooth, fair paths.

This paper extends our previous work [17]. In Section 3.1 we
discuss improvements to the arc and circle center rules, and
introduce a generalized transformation adjustment framework.
Section 3.4 describes a new method for curve alignment, and
Section 3.5 describes the transformation adjustment mechanism
in detail. Finally, Section 4 describes a new framework for handling
curves with corners.

3. Our approach

A key motivation for our system is wanting to work with
arbitrarily curved paths. This capability was not available in pre-
vious beautification systems. Although some can recognize a
variety of curves including spirals and general 5th degree poly-
nomials (PaleoSketch [8]), they recognize them only in isolation
and do not allow to take other existing paths into consideration,
which is important for interactive design.

Systems like that of Igarashi et al. [1] generate a set of potential
constraints and then produce suggestions by satisfying subsets of
these. A key challenge that prohibits simply generalizing these sys-
tems to support general curved paths is the number of degrees of
freedom, which boosts the number of potential constraints that need
to be evaluated. Moreover, unlike line or arc segments, many of a
general path's properties, for example the exact coordinates of a point
joining two smooth curves, do not have any meaning to the user. It
would not be helpful to add constraints for this point. Finally, satis-
fying constraints on a subset of the defining properties might distort
the path into something that barely resembles the original. Support-
ing generalized paths requires a different approach.

Our system is based on an extensible set of self-contained
geometric rules, each built as a black box and independent of other
rules. Every rule represents a single geometric property, such as
having an endpoint snapped or being a reflected version of an
existing path. The input to each rule is an input path consisting of
an end-to-end connected series of Bézier curves, and the set of
existing, resolved paths. The black box evaluates the likelihood
that the path conforms to the geometric property, considering the
resolved paths, and outputs zero or more modified versions of the
path. Each modified version gets a score, representing the like-
lihood that the modification is correct.

For example, the same-line-length rule would, for input that is a
line segment, create output versions that are the same lengths as
existing line segments, along with scores that indicate how close the
segment's initial length was to the modified length. Each rule also has
some threshold that determines that the score for a modification is
too low, and in that case it does not output the path.

The rules also mark properties of the path that have become
fixed and therefore can no longer be modified by future rules. For
example, the endpoint-snapping rule marks one or both endpoint
coordinates of a path as fixed. The same-line-length and parallel-
line rules do not attempt to modify a segment with two fixed
endpoints.

Since the rules do not depend on each other, it is easy to add
new rules to support additional geometric traits. Fig. 3 shows an
illustrated list of rules supported in our system.

Chaining the rules can lead to complex modifications of the
input stroke and is at the core of our framework. We treat the rule
application as branching in a directed rooted tree of paths, where
the root node corresponds to the unmodified input path. Each

Fig. 1. Examples of drawings created using ShipShape. The final drawings (black) were created from the imprecise user input (gray) by beautifying one stroke at a time, using
geometric properties such as symmetry and path identity. See Fig. 17 for more results.

Fig. 2. Incremental beautification workflow. Every newly drawn stroke (blue) is
beautified using previously created data (gray). The first stroke is left unchanged.
As the drawing continues, more suitable geometric constraints emerge and are
applied, such as path identity (2,6,7), reflection (2,6) or arc fitting (3,4). For com-
parison with the final beautified output (8), I shows the original input strokes. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

J. Fišer et al. / Computers & Graphics 56 (2016) 46–58 47



Download English Version:

https://daneshyari.com/en/article/441778

Download Persian Version:

https://daneshyari.com/article/441778

Daneshyari.com

https://daneshyari.com/en/article/441778
https://daneshyari.com/article/441778
https://daneshyari.com

