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a b s t r a c t

We present a novel p-multigrid method for efficient simulation of corotational elasticity with higher-
order finite elements. In contrast to other multigrid methods proposed for volumetric deformation, the
resolution hierarchy is realized by varying polynomial degrees on a tetrahedral mesh. The multigrid
approach can be either used as a direct method or as a preconditioner for a conjugate gradient algorithm.
We demonstrate the efficiency of our approach and compare it to commonly used direct sparse solvers
and preconditioned conjugate gradient methods. As the polynomial representation is defined w.r.t. the
same mesh, the update of the matrix hierarchy necessary for corotational elasticity can be computed
efficiently. We introduce the use of cubic finite elements for volumetric deformation and investigate
different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic
finite elements for deformation simulation by comparing analytical results in a static and dynamic
scenario and demonstrate our algorithm in dynamic simulations with quadratic and cubic elements.
Applying our method to quadratic and cubic finite elements results in a speed-up of up to a factor of 7 for
solving the linear system.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the realm of computer graphics several classes of algorithms
have been proposed for simulating volumetric deformation. These
include, among others, position-based dynamics [1], mass–spring
systems and finite element methods [2] (FEM). FEM is a popular
choice when intuitive material parameters and accuracy are
important, as these methods are based on continuum mechanics
and do not require parameter tuning to achieve physically plau-
sible results. Instead of the commonly used linear basis functions,
some authors propose to simulate volumetric deformation on
tetrahedral meshes using quadratic finite elements, i.e., using
polynomials of degree two (see, e.g., the work of Mezger et al.
[3] or recently Bargteil et al. [4]). This leads to improved accuracy
as higher polynomial degrees can better approximate the solution
of the partial differential equation. Even though the number of
degrees of freedom per element increases, the computational time

can be reduced as the desired deformation can be represented
with significantly fewer elements.

However, simulating deformation with finite elements is com-
putationally expensive, as for a stable simulation, large, sparse
linear systems must be solved in every time step. Typically, direct
solvers like sparse Cholesky factorization or the method of con-
jugate gradients (CG) with preconditioning are chosen to solve
these linear systems. These are usually the bottleneck of the
simulation algorithm and become even more critical with increas-
ing model sizes. A frequent compromise is to use a fixed number of
CG iterations, but this in turn increases the numerical damping of
the simulation and dissipates energy as we will demonstrate. In
this paper we address this issue and propose a geometric
p-multigrid method to efficiently and accurately solve sparse
linear systems arising from higher order finite elements.

In our approach, we construct a hierarchy of varying degree
polynomials to represent the field of unknowns. These are defined
on the same tetrahedral discretization to iteratively improve the
solution of the linear system. In contrast to other multigrid
approaches for deformation simulation these levels vary in poly-
nomial degree instead of mesh resolution. Furthermore, we
introduce volumetric deformation simulation using cubic finite
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elements on tetrahedral meshes, which have not been proposed so
far in the computer graphics community to the best of our
knowledge. We represent the shape functions as polynomials in
Bernstein–Bézier-form (B-form) and show how restriction and
prolongation of shape functions can be incorporated into the
polynomial hierarchy. Our contributions are as follows:

� We introduce a novel multigrid solver for volumetric deforma-
tion with higher order finite elements.

� We present deformation simulations with cubic finite elements
in B-form.

� We show how polynomial representations in B-form of differ-
ent degrees can be efficiently transformed into each other.

� We demonstrate a speed-up for higher order simulations up to
a factor of 7 for solving the linear system in comparison to a
preconditioned CG method.

This paper is based on our previous work [5] and extends it
with some more detailed descriptions and analyses. More speci-
fically, we describe the continuum mechanical approach and the
finite element discretization in more detail. We also compare our
purely geometric approach with Galerkin coarsening. Additionally,
an algorithm using the p-multigrid method as a preconditioner for
a conjugate gradient method is presented. Furthermore, we
analyze the convergence of the multigrid-preconditioned CG
solver (MGPCG) and the effect of approximating the field of
rotations with a single rotation matrix only.

2. Related work

In the realm of computer graphics many methods for volu-
metric deformation simulation have been proposed. Most of the
earlier work is summarized in the survey of Nealen et al. [6].
Besides methods based on solving the partial differential equa-
tions of linear, corotational or non-linear elasticity there are a
number of other techniques for physically plausible volumetric
deformation. In the early work of Baraff and Witkin [7] a
numerical integrator for mass–spring systems and constraints
was introduced allowing for arbitrarily large time steps. Although
mass–spring systems have not been the focus of research for a
long time, recently a block coordinate descent method was
proposed by Liu et al. [8] where a constant stiffness matrix allows
for efficient simulation. In the context of position-based dynamics
a good summary of the relevant work is described in the survey of
Bender et al. [1]. In contrast to these approaches we rely on
continuum mechanical modeling of elasticity. This has the advan-
tage that the simulation parameters such as, e.g., the material
parameters have an intuitive meaning instead of parameters
which require tuning depending on models and time step sizes.

Physically based simulation of deformation with FEM was first
adopted by O'Brien and Hodgins [9]. They modeled and simulated
brittle fracture using an explicit time stepping method. Mueller
and Gross [2] used implicit time integration together with a
corotational formulation. This allowed for stable simulations and
avoided the artifacts of linear elasticity by recomputing the
reference coordinate system. Irving et al. [10] presented a method
to cope with inverted tetrahedral elements that occur when large
forces are present. Parker and O'Brien [11] demonstrated how the
corotational formulation for simulating deformation and fracture
can be applied with strict computation time constraints in a
gaming environment. Kaufmann et al. [12] used a discontinuous
Galerkin method to simulate volumetric deformation. An exten-
sion of the corotational method that takes the rotational deriva-
tives into account has been presented by Chao et al. [13], achieving
energy conservation. In the context of deformable simulation with

element inversion, Stomakhin et al. [14] propose an energy-based
approach to handle inverted configurations more robustly. In order
to allow for larger time steps without numerical damping Michels
et al. [15] introduced exponential integrators for long-term stabi-
lity due to energy conservation.

Simulation with higher-order finite elements is wide-spread in
engineering applications (see e.g. [16]) where linear shape func-
tions do not provide sufficient accuracy. In the computer graphics
community quadratic finite elements were used for deformation
simulation [3] and interactive shape editing [17]. In a previous
work [18] we used quadratic finite elements in B-form for the
simulation of volumetric deformation. Later we developed a GPU
implementation for linear and quadratic finite elements [19].
Recently, Bargteil and Cohen [4] presented a framework for
adaptive finite elements with linear and quadratic B-form poly-
nomials. Our method builds upon the work of Bargteil and Cohen
and extends it by additionally introducing cubic finite elements
and employing an efficient method for solving the governing
linear systems.

Multigrid methods in general have been the subject of exten-
sive research. Standard textbooks like [20,21] provide a good
overview of the basic method and its theory. Geometric multigrid
methods are especially suited for discretizations on regular grids.
In the context of deformation simulation Zhu et al. [22] propose a
multigrid framework based on finite differences. Dick et al. [23]
use hexahedral finite elements discretization on a regular grid and
solve the linear systems using a GPU-based multigrid method. In
[24] they extend this approach for simulating cuts. In contrast, our
method employs a discretization on tetrahedral meshes, which
allow for an adaptive approximation of the simulated geometry
potentially requiring less elements.

Based on tetrahedral meshes Georgii et al. [25] proposed a
geometric multigrid algorithm based on linear finite elements
using nested and non-nested mesh hierarchies. In general this
geometric concept cannot be easily adapted for higher order finite
elements. In their work the computational bottleneck is the matrix
update, where sparse matrix–matrix products (SpMM) are
required on every level to update the multigrid hierarchy. Later
in [26] they specifically developed an optimized SpMM to address
this bottleneck and report a speed-up of one order of magnitude.
However, the matrix update is still as expensive as the time for
applying the multigrid algorithm itself. In contrast, our p-multigrid
method employs polynomial hierarchies on a common tetrahedral
mesh. As the problem is directly discretized the expensive SpMM
operations are avoided.

For two-dimensional analysis of elliptic boundary value pro-
blems, Shu et al. [27] introduced a p-multigrid for finite elements
using a higher-order Lagrangian basis. To the best of our knowl-
edge we are the first to introduce this concept in three dimensions,
to employ polynomials in B-form and to solve equations of
elasticity with this algorithm.

In comparison to our previous work [5], on which this article is
based, we show how to use the p-multigrid method as a pre-
conditioner for a conjugate gradient method and analyze its
convergence and the effect of a constant rotation approximation.

3. Higher-order finite element discretization of elasticity

In this section we briefly outline the general approach for
simulating volumetric deformation using higher order finite ele-
ments. First, we describe the general process of higher order
discretization and then outline the steps necessary for co-
rotational elasticity.
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