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Abstract

We propose the use of affine arithmetic in cell-mapping methods for the robust visualization of strange attractors and show that the
resulting cellular approximations converge faster than those produced by cell-mapping methods based on classical interval arithmetic.
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1. Introduction

The goal in the study of discrete dynamical systems is to
understand the long-term behavior of the iterates of a map
f:R" — R". We are interested in what happens to the orbit
O(p) of a point p € R™:

Op) = {p.f )L @EN.SUS D)), - -

Typically, such orbits either diverge to infinity or converge
to a manifold in R”. (A manifold is a well-behaved set, such
as a point, a set of isolated points, a curve, a surface, etc.)
This limit set is called the attractor of the dynamical
system. Not all attractors are well behaved and in many
cases the orbits accumulate on sets that have complicated
geometry and topology. Such limit sets are known as
strange attractors and can exist even for the simplest non-
linear maps f. A prime example of this phenomenon is
given the famous Hénon map [1], which acts on the plane
R? as follows:

f(x’y) = (1 +y - axz’bx)a

where @ and b are parameters. The Hénon strange attractor
is obtained by setting a = 1.4 and b = 0.3; it is shown in
Fig. 1. (Strictly speaking, it has not been mathematically
proved that the Hénon attractor is actually a strange
attractor in the technical sense. The mathematics of the
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Hénon map is very complicated and its dynamics is not yet
fully understood [2].)

Mathematicians usually start their study of a dynamical
system by drawing a picture of its orbits. The simplest
method for producing such a picture is the point-sampling
method discussed in Section 2. However, as also discussed
in Section 2, this method is not robust: it depends on trial
and error, is subject to rounding errors, and may produce
pictures that are not reliable. Other methods for approx-
imating attractors reliably have been proposed, such as the
cell-mapping method, which we discuss in Section 3.
Although it can be based on point sampling, the cell-
mapping method is made robust by using interval
arithmetic [3], as described by Michelucci [4]. We propose
here the use of affine arithmetic [5] instead of interval
arithmetic in cell mapping. In Section 4 we show some
examples of the performance of the cell-mapping method
based on affine arithmetic for creating robust pictures of
strange attractors.

Fig. 1. The Hénon strange attractor.
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2. Point sampling

The simplest way to “‘see’” the dynamics of a discrete
system is to draw a picture of its orbits using the following
sampling method:

(1) Guess or somehow find a box @ containing the
attractor.

(2) Select a set of random starting points in €.

(3) For each starting point p € Q, compute but do not plot
the first ny points in the orbit O(p).

(4) Compute and plot the next n; points in O(p).

If the attractor is a manifold, then picture will show a fairly
dense approximate sampling of the manifold. If the orbits
diverge to infinity, the picture will show nothing (if we do
not plot outside Q). For strange attractors, the picture will
show a cloud of dots that clearly has some structure, but
this structure is elusive to describe. For instance, detailed
pictures of the Hénon attractor suggest that it has Cantor-
set cross-sections [1] and thus has a fractal nature.

The point-sampling method is very simple to understand
and implement. It generates nice pictures. The main
difficulty we face when using this method is how to choose
ny and n;. Choosing ny too small will include transient
parts of the orbits, that is, points that are not yet near the
attractor. Choosing n; too small will risk not covering the
attractor sufficiently well. On the other hand, choosing n
or n; too large may be wasteful and inefficient. In practice,
we just choose ny and n; by trial and error. However, there
is no way to be sure that we have selected good values for
nop Oor nj.

Another difficulty with the point-sampling method is
that it is implemented using floating-point arithmetic,
which is subject to rounding errors [6]. For chaotic
dynamical systems—the ones that have strange attrac-
tors—rounding errors are potentially serious, because
orbits starting at nearby points can diverge from each
other exponentially. Sometimes, this strong sensitivity to
initial conditions does not affect the overall picture,
because numerically computed orbits are ““‘shadowed” by
exact orbits that capture the typical behavior of the system.
However, the truth is that rounding errors affect numerical
simulations of dynamical systems in very complex ways [7].
Well-conditioned dynamical systems may display chaotic
numerical behavior [8,9]. Conversely, numerical methods
can suppress chaos in some chaotic dynamical systems [9].

As a consequence of both difficulties, the pictures
generated with the point-sampling method will probably
not display the attractor reliably. This is specially serious
when we have just started investigating a dynamical system
and its attractor is not yet known.

3. Cell mapping

An alternative to point sampling is cell mapping [10,11].
The main idea in this method is to decompose £ into cells

(typically using a uniform rectangular grid) and study the
dynamics induced by f on this set of cells. Instead of asking
where each point goes under f, we ask where each cell goes.
More precisely, we consider the directed graph having the
cells as vertices and having an edge from cell 4 to cell B if
f(A4) intersects B. This means that 4 goes (partially) to B.
This graph is called the cell graph. The key observation in
the cell-mapping method is that the strongly connected
components of the cell graph must cover the attractor of f.
Cells having no edge into them cannot contain any part of
the attractor because f never takes points into those cells.
Cells in the same strongly connected component are
(partially) mapped into each other by iterates of f. Thus,
strongly connected components capture the transitivity of
the attractor. Fig. 2 shows a cell graph for the Hénon map.

Given a sufficiently fine cell decomposition of @, we can
find a good approximation of the attractor by finding the
strongly connected components of the corresponding cell
graph. A more efficient approximation for the attractor can
be found by using recursive subdivision: start with a coarse
cell decomposition of Q; find the cell graph induced by f;
find its strongly connected components; subdivide the cells
in these components into smaller cells; rebuild the cell
graph using the smaller cells; find its strongly connected
components; and repeat until the cells are small enough.
Efficiency comes from not having to start from a very fine
cell decomposition; only the cells in the strongly connected
components are refined. Fig. 3 shows the convergence of
this recursive subdivision to the Hénon attractor with
classical parameters ¢ = 1.4 and b = 0.3.

Finding the strongly connected components of a
graph can be done in time linear in the size of the graph,
using an elegant algorithm by Tarjan [12]. This leaves as
the main difficulty in the cell-mapping method how to
find the edges in the cell graph, that is, how to decide
which cells f(4) intersect. We call this the edge problem.
Because f is a non-linear map, there is no simple
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Fig. 2. Cell graph of the Hénon map based on a 3 x 3 rectangular
subdivision. The strongly connected component is shown in green.
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