
Computers & Graphics 30 (2006) 46–53

Supercover model, digital straight line recognition and curve
reconstruction on the irregular isothetic grids

David Coeurjolly�, Loutfi Zerarga
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Abstract

On the classical discrete grid, the analysis of digital straight lines (DSL for short) has been intensively studied for

nearly half a century. In this article, we are interested in a discrete geometry on irregular grids. More precisely, our goal

is to define geometrical properties on irregular isothetic grids that are tilings of the Euclidean plane with different sized

axis parallel rectangles. On these irregular isothetic grids, we define digital straight lines with recognition algorithms and

a process to reconstruct an invertible polygonal representation of an irregular discrete curve.

r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

When a straight line is digitized on a square grid, we

obtain a sequence of grid points defining a digital

straight-line segment. This computer representation of

such a simple Euclidean object has drawn considerable

attention in many applications (drawing [1], shape

characterization [2–4], . . .). The structure of DSL is

now well known and links have been illustrated between

DSL and objects from number theory or theory of

words (see [5] for a survey on digital straightness).

Beyond this characterization, an important task in

computer vision consists in the recognition of DSL

segments. More precisely, given a set of pixels, we have

to decide if there exists a DSL segment that contains the

given pixels. Many efficient algorithms exist to imple-

ment such a recognition process [6–9]. Based on a digital

straight line recognition algorithm, we can also define a

segmentation process that decomposes a discrete curve

into maximal DSL segments. The next step of the

segmentation process is to reconstruct a polygonal curve

from the discrete data such that its digitization is equal

to the original discrete curve. This process is called an

invertible reconstruction of a discrete curve [10–12].

The invertible property is an important one in discrete

geometry since it allows to convert discrete data

to Euclidean ones such that no information is added

nor lost.

In this article, we are interested in defining a geometry

on irregular isothetic grids. More precisely, we consider

grids defined by a tiling of the plane using axis parallel

rectangles. Such a grid model includes, for example, the

classical discrete grid, the elongated grids [13] and the

quadtree based grids [14]. In [15], a general framework

has been proposed that defines elementary objects and a

digitization framework, the supercover model. An

important aspect of this general framework is the

consistency with classical definitions if the discrete space

is considered.

Many applications may benefit from these develop-

ments. For example, we can cite the analysis of quadtree

compressed shapes, or the use of geometrical properties

in objects represented by interval or affine arithmetics

(see discussion in [15]). Based on this irregular model, we
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define digital straight lines with recognition algorithms

and a process to reconstruct an invertible polygonal

representation of an irregular discrete curve.

Section 2 presents more formal definitions in the

irregular grids: adjacency relations, objects, arcs, curves

and the supercover model. Based on a definition of the

irregular isothetic digital straight lines, we present

algorithms to recognize maximal irregular discrete

straight segments and to reconstruct invertible poly-

gonal arcs and curves (Section 3). Experiments and

results are shown in Section 4.

2. Preliminary definitions

2.1. The irregular isothetic model

First of all, we define an irregular isothetic grid,

denoted I, as a tiling of the plane with isothetic

rectangles. In this framework, the rectangles have not

necessarily the same size but we can note that the

classical digital space is a particular irregular isothetic

grid. In that case, all squares are centered in Z2 points

and have a border size equal to 1. Fig. 1 illustrates some

examples of irregular isothetic grids. A rectangle of an

isothetic grid is called a pixel. Each pixel P is defined by

its center ðxP; yPÞ 2 R
2 and a size ðlx

P; l
y
PÞ 2 R2. Before we

introduce objects and straight lines in such grids, we

need adjacency relations between pixels.

Definition 1 (ve-adjacency, e-adjacency). Let P and

Q be two pixels. P and Q are ve-adjacent if:

jxP � xQj ¼
lx
P þ lx

Q

2
and jyP � yQjp

l
y
P þ l

y
Q

2
,

or

jyP � yQj ¼
l
y
P þ l

y
Q

2
and jxP � xQjp

lx
P þ lx

Q

2
.

P and Q are e-adjacent if we consider an exclusive ‘‘or’’

and strict inequalities in the above ve-adjacent definition.

In the following definitions, we use the notation

k-adjacency in order to express either the ve-adjacency or

the e-adjacency. Using these adjacency definitions,

several basic objects can be defined:

Definition 2 (k-path). Let us consider a set of pixels

E ¼ fPi; i 2 f1; . . . ; ngg and a relation of k-adjacency. E

is a k-path if and only if for each element Pi of E, Pi is

k-adjacent to Pi�1.

Definition 3 (k-object). Let E be a set of pixels, E is a

k-object if and only if for each couple of pixels ðP;QÞ
belonging to E� E, there exists a k-path between P and

Q in E.

Definition 4 (k-arc). Let E be a set of pixels, E is a k-

arc if and only if for each the element of

E ¼ fPi; i 2 f1; . . . ; ngg, Pi has exactly two k-adjacent

pixels, except P1 and Pn which are called the extremities

of the k-arc.

Definition 5 (k-curve). Let E be a set of pixels, E is a

k-curve if and only if E is a k-arc and P1 ¼ Pn.

If we consider pixels such that lx
P ¼ l

y
P ¼ 1 and

ðxP; yPÞ 2 Z2 (i.e. a 2D digital space), all these definitions

coincide with the classical ones [16,17]. More precisely,

the ve-adjacency (resp. e-adjacency) is exactly the 8-

adjacency (resp. the 4-adjacency). In the following, we

only consider geometrical properties of such objects. A

complete topological analysis of k-curves and k-objects

is not addressed here.

2.2. Supercover model on the irregular isothetic grids

Before defining the digital straight lines on the

irregular isothetic grids, we have to consider a digitiza-

tion model. In the following, we choose to extend the

supercover model. This model was first introduced by

Cohen-Or and Kaufman in [18] on the classical discrete

grid and then widely used since it provides an analytical

characterization of basic supercover objects (e.g. lines,

planes, 3D polygons,y) [19,20].

Definition 6 (Supercover on irregular isothetic

grids). Let F be an Euclidean object in R2.

The supercover SðF Þ is defined on an irregular isothetic
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Fig. 1. Examples of irregular isothetic grids: (from left to right) the classical discrete grid (ðxP; yPÞ 2 Z2 and lx
P ¼ l

y
P ¼ 1), an elongated

grid (lx
P ¼ l, l

y
P ¼ m and ðxP; yPÞ ¼ ðli; mjÞ with ði; jÞ 2 Z2), a quadtree decomposition (for a cell of level k, ðxP; yPÞ ¼ ðm=2

k ; n=2kÞ and

lx
P ¼ l

y
P ¼ 1=2k�1 for some m; n 2 Z); a unilateral and equitransitive tiling by squares: the size of the biggest square is equal to the sum

of the two other square sizes; finally a general irregular isothetic grid.
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