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Abstract

In this article we propose an original reversible method for discrete surface smoothing. This method is based on a

statistical estimation of the discrete tangent plane on the voxels of the discrete surface. A geometrical constraint is used

to control the recognition of the tangent plane. The resulting surface representation allows us to get both smooth

normal vectors of the surface and a smooth surface mesh while preserving the geometrical properties of the surface.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Processing data sets of three-dimensional discrete

images brings up the problem of extraction and

representation of geometric features, and of the visua-

lization of the surface of 3D objects. The initial volume

object can be visualized as a set of 6-connected voxels

(also called cuberille representation) [1]. But this

representation in the discrete space is neither convenient

for the analysis of geometric properties of the object nor

for the visualization.

A polygonal representation of the boundary of a

discrete object is usually used to represent its surface and

to perform rendering. One of the first approaches to

obtain such a representation was the marching cube

algorithm [2]. This method has several drawbacks both

from the geometrical and the topological points of view.

Other algorithms exist which associate a surface mesh to

a discrete surface. For example Türmer and Wütrich

triangulate the surface by associating centers of voxels to

each other [3]. Since the direct rendering of the surface

obtained after such a triangulation is not smooth,

normal vectors are computed in discrete space using a

varying neighborhood size [4,5]. Then the surface is

rendered using Gouraud shading [6]. This rendering

technique gives good results, but it smooths only the

normal vector of the discrete surface and not the

geometry of the surface net. Other methods use

deformable models to extract a continuous surface from

the original discrete surface [7,8].

An alternative consist in smoothing the object surface

by moving the points of the discrete surface. In [9],

Braquelaire and Pousset define Euclidean nets as a 3D

extension of the model of Euclidean paths [10,11]. In this

model, each surface point may be moved inside the unit

cube containing it. The smoothing is thus reversible and

the original surface can be retrieved from the smoothed

one. In the proposed method the points of the discrete
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surface were moved according to a projection onto some

discrete tangent planes. This plane was estimated by

searching for local geometric configurations of voxels

called tricubes [12,13].

The main drawback of this method is the small

neighborhood size which is used to determine the

discrete tangent plane. Therefore, the precision of the

final result is limited to a local analysis of the discrete

surface. In recent works [14], Coeurjolly suggests to use

a statistical computation of the discrete tangent plane to

obtain the normal vectors of the discrete surface.

In this work we develop this approach and propose a

statistical method to recognize accurate tangent plane

with a varying neighborhood size. We then use this

method to enhance the construction of a smoothed

Euclidean net associated with a discrete surface. This

method permits to obtain both smooth normal vectors

and smooth surface mesh.

In the following section, we recall some definitions

about Euclidean nets. Then, in Section 3, we introduce

the statistical estimation of the discrete tangent plane. In

Section 4, we show how to apply a geometric constraint

to control the recognition of the discrete tangent plane.

Section 5 addresses the problem of transforming the

surface from discrete space to a new surface net in

continuous space. Afterward, in Section 6 experimental

results on real data are presented. Finally, we conclude

by future work and implication of this work.

2. Discrete and Euclidean nets

Let us now give some basic definitions used in the

following. The coordinates of a point P are denoted by

the tuple ðxP; yP; zPÞ. The set Z3 of points with integer

coordinates is called the discrete space and its elements

are called discrete points. We denote by upper case

letters the points of the discrete space Z3 and by lower

case letters the points of the Euclidean space R3.

Definition 1 (Andrès [15]). A discrete naive plane

Pða; b; c; m;oÞ is the set of points ðx; y; zÞ of Z3 satisfying

the double inequality mpaxþ byþ czomþ o, with

a,b,c,m, o 2 Z and o ¼ maxðjaj; jbj; jcjÞ.

The vector of coordinates ða; b; cÞ is the normal vector

of the discrete plane. The coefficient m describes the

position of the discrete plane and o corresponds to the

thickness. In the same way, a discrete naive line

Dða; b; m;oÞ is characterized by the normal vector

ða; bÞ, by the position in the plane (m) and by the

thickness o ¼ maxðjaj; jbjÞ [16].
A voxel is a colored unit cube, the center of which is a

discrete point. The coordinates of a voxel are the

coordinates of its center. An image is a set of voxels and

the image domain is the set of voxel centers. In the

following we consider images for which the domain is a

parallelepipedic set of discrete points. The voxel based

approach has been chosen to define the boundary of an

object. More precisely, the discrete surface of an object V

is the subset SðV Þ of V such that each voxel of SðV Þ is 6-

connected to at least a voxel of the complement of V in

the image. A voxel of SðV Þ is called a surface voxel of V.

A surfel is defined as the intersection of two 6-

adjacent voxels. In the same way, a linel is defined as the

intersection between two 4-adjacent pixels one of which

belongs to the discrete line. From these definitions

surfels and linels are differentiated according to their

configurations. Fig. 1 illustrates different types of surfels

and linels. Three different types of surfels are illustrated

in the image (b) and the other surfels of type 4,5 and 6

are defined according to the opposite direction from

respectively the orientation of surfels 1, 2 and 3.

The following definitions are extensions for the three

dimensional case of the definitions used in the model of

Euclidean paths [11].

Definition 2. Let P ¼ ðxP; yP; zPÞ be a discrete point.

The cell of P is the set of points p of R3 verifying:

jxP � xpjo 1
2
, jyP � ypjo 1

2
, jzP � zpjo 1

2
.
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Fig. 1. Illustration of the different type of linels (a) and surfels

(b).
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