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a b s t r a c t

Biomagnification of organic pollutants in food webs has been usually associated to hydrophobicity and
other molecular descriptors. However, direct information on atoms and substituent positions in a mo-
lecular scaffold that most affect this biological property is not straightforward using traditional QSPR
techniques. This work reports the QSPR modeling of biomagnification factors (logBMF) of a series of
aromatic organochlorine compounds using three MIA-QSPR (multivariate image analysis applied to
QSPR) approaches. The MIA-QSPR model based on augmented molecular images (described with atoms
represented as circles with sizes proportional to the respective van der Waals radii and having colors
numerically proportional to the Pauling's electronegativity) encoded better the logBMF data. The average
results for the main statistical parameters used to attest the model's predictability were r2¼0.85,
q2¼0.72 and r2test¼0.85. In addition, chemical insights on substituents and respective positions at the
biphenyl rings A and B, and dibenzo-p-dioxin and dibenzofuran motifs are given to aid the design of
more ecofriendly derivatives.

& 2016 Elsevier Inc. All rights reserved.

1. Introduction

Organochlorine compounds are omnipresent pollutants in the
environment and because of their high lipophilicity (they are stored
in adipose tissues) and persistency, they tend to accumulate in the
food chain. The toxicity of this class of compounds comes from their
structural difference if compared to naturally occurring substances
and, therefore, some contaminated organisms are not capable of
metabolizing them, causing accumulation (Baird and Cann, 2012).

Polychlorinated biphenyls (PCBs) and dichloro diphenyl tri-
chloroethane (DDT) are some examples of organochlorine com-
pounds with capacity to bioaccumulate and produce harmful effects
in ecosystems. Biomagnification refers to a progressive accumulation
of substances from a trophic level to another along the food chain.
Because of this phenomenon, the concentration of such micro-
pollutants in the environment has increased at rates higher than
their removal (such as degradation); studies have detected the pre-
sence of these compounds and the respective metabolites in several
matrices, as a result of their accumulation in living organisms (Font
and Marsal, 1988; Bisson and Hontela, 2002). The toxicology of PCBs

is affected by the number and position of the chlorine atoms, as
substitution in the ortho position hinders the rotation of the rings
(PCBs without ortho substitution are referred to as coplanar and the
others are noncoplanar) (Newman, 2015). Such structures bind to the
aryl hydrocarbon receptor (AhR) and may thus exert dioxin-like ef-
fects, namely impairment of the immune system, the developing
nervous system, the endocrine system and reproductive functions
(Hahn, 1998). The analysis of the effect of structural modification (e.g.
substituent types and positions) on a given compound property (e.g.
biomagnification) is within the field of Quantitative Structure-Prop-
erty Relationships (QSPR).

Most QSPR studies for modeling environmental properties,
such as soil sorption, bioacummulation and biomagnification, are
based on octanol/water partition coefficients (logP) (Mackay et al.,
1997), due to the hydrophobic properties of the living tissues
where substances accumulate. Crowding of chlorine substituents,
as well as specific substitution patterns, play an important role in
partition of PCBs between water and octanol (Sabljic, 2001). Other
physicochemical descriptors (Todeschini and Consonni, 2000) also
provide valuable information on the molecular properties affecting
the biomagnification in a general sense, but the inherent drawback
of such analyses lies in the vague notion on the group types and/or
molecular positions that most affect the biomagnification.

Thus, this work reports the modeling of biomagnification factors
(BMF) of a series of aromatic organochlorine pollutants using three
MIA-QSPR approaches. The MIA-QSPR (multivariate image analysis
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applied to QSPR) method is known for a decade as a QSPR techni-
que capable of recognizing two-dimensional chemical structures
and encoding atomic, stereochemical and connectivity properties
using 2D projections of molecular images (in terms of pixels) as
descriptors (Freitas et al., 2005; Barigye and Freitas, 2016). Conse-
quently, particular structural features and/or positions responsible
for enhanced or attenuated BMF of aromatic organochlorine com-
pounds in living organisms can be rationalized, also contributing to
driving the synthesis of more ecofriendly compounds.

2. Materials and methods

A series of aromatic organochlorine compounds with logBMF
values experimentally available was obtained from the literature
(Fatemi and Baher, 2009) (Table 1). The original chemical analysis
reported by Henny et al. (2003) for these compounds was performed
on osprey egg and whole fish composite samples that were collected
from the Willamette River, USA. The data set molecules were drawn
using either the ACD/ChemSketch program (2009) (for the tradi-
tional MIA-QSPR model) or the GaussView program (Dennington
et al., 2008) (for the augmented MIA-QSPR models). For the aug-
MIA-QSPR models, atoms were represented as spheres with sizes

proportional to the van der Waals radii and colored differently to
distinguish them, since different numbers are assigned to each color
pixel (from 0 – black, to 765 – white), consistent with the RGB (red-
green-blue) system of colors. For the aug-MIA-QSPRcolor model, the
pixel values were numerically proportional to Pauling's electro-
negativity, in order to encode electrostatic interactions possibly
ruling the biomagnification factors. The congruent chemical sub-
structures were overlaid for 2D alignment purposes, in such a way
that only variable motifs explain the variance in the y block. Each
image was saved as bitmaps and converted to a numerical x� y
matrix. Subsequently, the n images (compounds) were grouped to
form a three-way array n� x� y, which was unfolded to an n�
(x� y) matrix. This matrix was divided into training (80% of com-
pounds) and test (20% of compounds) set compounds. Five splits
were performed to test the model’s robustness. Because of the large
data matrix obtained from this procedure (thousands columns), a
search for the best 5 variable model for the logBMF was performed
using the Multiple Linear Regression method coupled with the Ge-
netic Algorithm (MLR-GA). Preliminary unsupervised feature selec-
tion based on Shannon's entropy (variables with less than 10% of
entropy were discarded) and the variable correlation coefficients (X/
X¼0.98) was performed. The built QSPR models were validated
using leave-one-out cross-validation (LOOCV) and external valida-
tion procedures. Other measures considered in the assessment of
the quality of the built model include: the determination coefficient
between actual and predicted logBMF (q2 and r2test), root mean
square error of prediction (RMSECV and RMSEP) and the modified
r2test (rm2) parameter, according to the criteria established in the lit-
erature (Roy et al., 2013). In addition, the reliability of the model was
attested using the y-randomization test [analyzed in terms of the
corrected penalized r2 (crp2)] (Mitra et al., 2010), in which the y-
block is shuffled and regression performed to verify the inexistence
of chance correlation. The image treatment and statistical analysis
were performed using the Chemoface program (Nunes et al., 2012).

3. Results and discussion

The predictive ability of the MIA-QSPR models for the 40 aro-
matic organochlorine compounds of Table 1 was evaluated using
three approaches: 1) traditional MIA-QSPR, in which descriptors
correspond to black and white pixels and chemical structures are
represented as wireframes; 2) aug-MIA-QSPR, in which descriptors
correspond to pixels colored according to the GaussView default
for each atom (circles with sizes proportional to the van der Waals
radii); 3) aug-MIA-QSPRcolor, whose chemical structures are iden-
tical to the aug-MIA-QSPR model, but atom colors numerically
proportional the corresponding electronegativity values. Fig. 1
shows the overlaid images representing these three models.

From the complete data matrix of thousands descriptors for each
approach (MIA-QSPR, aug-MIA-QSPR and aug-MIA-QSPRcolor), only five
independent variables were selected for further regression against the
logBMF values usingmultiple linear regression (MLR). Five QSPRmodels
were built for each approach, differing by the test set compounds used
for external validation, whose results are shown in Tables 2–4.

On the basis of the mean values for the statistical parameters of
each model, particularly those related to external validation, which
is considered the only way to establish a reliable QSPR model
(Golbraikh and Tropsha, 2002), we found that models based on
augmented images are more predictive than traditional MIA-QSPR.
Moreover, the method that includes pixel colors proportional to the
atomic electronegativity (aug-MIA-QSPRcolor) showed to be slightly
better. This small difference between the models obtained using
aug-MIA descriptors indicates that steric (hydrophobicity) rather
than electrostatic (encoded by the atoms electronegativity) effects
are more effective to explain the biomagnification property of

Table 1
Compounds used in the QSAR modeling and respective logBMF values.a

Cpd
number

Name Notation logBMFexp

1 2378TCDF TCDF �0.12
2 hexachlorobenzene HCB 0.32
3 3,3,4,4-Tetrachlorobiphenyl PCB77 0.77
4 2,4,4,5-Tetrachlorobiphenyl PCB74 0.83
5 2,3,4,4-Tetrachlorobiphenyl PCB60 0.90
6 2,2,3,4,5,6-Hexachlorobiphenyl PCB149 0.95
7 2,2,3,3,4,5,6-Heptachlorobiphenyl PCB174 1.00
8 1,2,3,4,6,7,8,9-Octachlorodibenzofuran OCDF 1.00
9 2,3,3,4,6-Pentachlorobiphenyl PCB110 1.04
10 2,2,4,4,5-Pentachlorobiphenyl PCB99 1.11
11 2,2,4,5,5,-Pentachlorobiphenyl PCB101 1.25
12 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD 1.25
13 2,3,4,4,5-Pentachlorobiphenyl PCB118 1.30
14 3,3,4,4,5,5-Hexachlorobiphenyl PCB169 1.32
15 2,3,3,4,4-Pentachlorobiphenyl PCB105 1.36
16 2,2,3,3,4,4,6-Heptachlorobiphenyl PCB171 1.36
17 2,2,3,4,5,5,-Hexachlorobiphenyl PCB141 1.43
18 2,2,3,4,4,5,6-Heptachlorobiphenyl PCB183 1.43
19 2,2,3,3,4,4,5,5-Octachlorobiphenyl PCB194 1.43
20 2,2,3,4,4,5,5,6-Octachlorobiphenyl PCB203 1.43
21 3,3,4,4,5-Pentachlorobiphenyl PCB126 1.43
22 2,2,3,4,4,5-Hexachlorobiphenyl PCB138 1.46
23 2,2,4,4,5,5-Hexachlorobiphenyl PCB153 1.46
24 2,2,3,4,5,5-Hexachlorobiphenyl PCB146 1.48
25 2,2,3,3,4,5,6,6-Octachlorobiphenyl PCB201 1.48
26 2,2,3,3,4,5,6,6-Octachlorobiphenyl PCB200 1.50
27 2,2,3,3,4,5,5-Heptachlorobiphenyl PCB172 1.53
28 2,2,3,4,4,5,5-Heptachlorobiphenyl PCB180 1.53
29 1,1-Dichloro-2,2-(4-ClC6H4)ethane p,p-DDD 1.61
30 Dichlorodiphenyltrichloroethane DDT 1.92
31 1,1-Dichloro-2,2-(4-ClC6H4)ethene p,p-DDE 2.19
32 1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin H6CDD 2.44
33 1,2,3,4,6,7,8-Heptachlorodibenzo-p-

Dioxin
H7CDD 2.44

34 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-
Dioxin

OCDD 2.49

35 2,3,4,4-Tetrachlorobiphenyl PCB66 0.83
36 2,2,3,5,6-Pentachlorobiphenyl PCB95 0.83
37 2,2,3,3,4,4,5-Heptachlorobiphenyl PCB170 1.53
38 2,3,3,4,4,5,6-Heptachlorobiphenyl PCB190 1.53
39 2,2,3,4,4,5,6-Heptachlorobiphenyl PCB182 1.39
40 2,2,3,4,5,5,6-Heptachlorobiphenyl PCB187 1.39

a The chemical structures are given in the Supplementary material.
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