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a b s t r a c t

Total variation (TV) model is a classical image restoration model. The introduction of this model is
revolutionary, since TV can preserve discontinuities (edges) while removing other unwanted fine scale
details. Lots of efficient methods have been successfully devised and applied to image restoration.
However, many of them are sensitive to numerical errors. In this paper, we will first introduce a robust
TV based model, which regularizes the restoration using joint isotropic and anisotropic total variation to
suppress numerical errors, then present an efficiently iterative algorithm using augmented Lagrangian
method. By separating the problem into three sub-problems, the algorithm can be solved efficiently
either via fast Fourier transform (FFT) or closed form solution in each iteration. Finally, we use metric
Q which is based upon singular value decomposition of local image gradient matrix to effectively
measure true image content. Extensive numerical experiments demonstrate that our proposed model
has better performance than several state-of-the-art algorithms in terms of signal–noise ratio and
recovered image quality.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Images are produced to record or display useful information. Due
to the imperfections in the imaging and capturing process, however,
the final image invariably represents a degraded version of the
original scene. The undoing of these imperfections, i.e., image
restoration, is critical to many of the subsequent image processing
tasks. Image restoration (sometimes referred to as image deblurring
or image deconvolution) is concerned with the reconstruction or
estimation of the uncorrupted image from a blurry and noisy one.

Total variation (TV) regularization has been successfully applied to
image restoration and extensively generalized [1–12], since it was
first introduced by Rudin, Osher and Fatemi (ROF) in their pioneering
work [13] on edge preserving image denoising. It was designed with
the explicit goal of preserving sharp discontinuities in images while
removing noise and other unwanted fine scale details. Variational
models formulate the solution of image restoration problem as
minimizers of appropriately chosen functionals [34]. The minimiza-
tion technique for such models routinely involves the solution of
nonlinear partial differential equations (PDEs) derived as necessary
optimality conditions. Hence, this kind of model is difficult to solve
due to the TV term's nonlinearity and non-differentiability. Many fast

solvers [1,14–21] have been designed for TV minimization with
squared L2 fidelity term (TV-L2 model), which is particularly suitable
for deblurring images corrupted by Gaussian noise.

Besides Gaussian noise, impulsive noise is another typical and
important noise. Impulsive noise is often generated by malfunc-
tioning pixels in camera sensors, faulty memory locations in
hardware, or erroneous transmission [22]. Impulsive noise has
two common types: salt-and-pepper and random-valued noise. In
images contaminated by such noise, a certain number of pixels of
the underlying image are uncorrupted, and the corrupted pixels
usually have intensities distinguishable from those of their neigh-
bors. TV-L1 model, which uses TV with L1 fidelity term, was
devised to restore images corrupted by impulsive noise. Compared
with TV-L2 model, TV-L1 has many advantages. First, it is more
suitable for impulsive noise removal [23,24]. Second, it fits
uncorrupted pixels exactly and regularizes corrupted pixels per-
fectly. Finally, it provides many useful properties [25–27]. How-
ever, the TV-L1 model is hard to compute due to the nonlinearity
and non-differentiability of both the TV term and the data fidelity
term. Some existing numerical methods include gradient descent
method [28], Lagrangian-based alternating direction method [31],
the splitting-and-penalty based method [33], and the primal–dual
method [29] based on semi-smooth Newton algorithm [32], as
well as alternating direction method [30].

FTVd [20,33] and ALM [1] are two of the state-of-the-art
algorithms for TV-L1 image reconstruction. FTVd applied the
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well-known variable-splitting and quadratic penalty function
techniques in optimization. The per-iteration computational com-
plexity of the algorithm is three fast Fourier transforms [20,33].
The latest FTVd version 4.1 uses alternating direction method
(ADM) to avoid the ill-conditioning caused by large penalty
parameter in previous versions and achieve faster convergence.
FTVd is applicable to recover blurry images corrupted by Gaussian
noise (TV-L2 model) or impulsive noise (TV-L1 model). ALM
extended augmented Lagrangian method for TV-L2 restoration to
TV models with non-quadratic fidelities [1]. ALM applies to
reconstruct images with impulsive noise (TV-L1 model) or Poisson
noise (TV-KL model). For these two cases, ALM is extremely
efficient since all the sub-problems have closed form solutions.

However, these two algorithms both solve isotropic (2-norm
based) TV-L1 models. When corrupted with high level impulsive
noise, images recovered with ALM or FTVd tend to be too smooth
and lose small scale features. What is worse, restored images may
appear some random dirty points (see Fig. 7).

In this paper, we propose a new model which uses joint
isotropic-and-anisotropic total variation as regularizer. Augmented
Lagrangian method for isotropic TV-L1 model is first extended to
anisotropic (1-norm based) TV-L1 model. Then an approximate
algorithm to solve the mixed TV-L1 model is described. Numerical
results on images with different levels of impulsive noise demon-
strate that the new algorithm can suppress dirty points and
produce higher quality restorations than FTVd and ALM.

The rest of this paper is organized as follows. In Section 2, we
propose a novel mixed TV-L1 model, devise augmented Lagrangian
method for anisotropic TV-L1 model, and describe an efficient
algorithm to solve the proposed model. Numerical results in
comparison with FTVd and ALM are presented in Section 3. Finally,
concluding remarks are given in Section 4.

2. Mixed TV-L1 image restoration

We consider the problem of recovering grayscale images
degraded by blurring and impulsive noise (e.g., salt-and-pepper
noise). Without loss of generality, we assume that the underlying
images have square domains. Let uARN2

be an original N � N
grayscale image, KARN2�N2

represent a blurring operator, nARN2

be an additive noise, and f ARN2

be an observation which satisfies
the relationship:

f ¼ K n uþn:

Given f and K, the image u is restored from the following
model:

min
u

Rð∇uÞþαJKu� f J1; ð1Þ

where Rð∇uÞ is a regularization term, ∇u denotes the discrete
gradient of u at pixels, and α40 balances the regularization term
and the L1 fidelity term.

For isotropic TV-L1 model, the regularization term is

Rð∇uÞ ¼ TVIðuÞ ¼ ∑
1r i;jrN

J ð∇uÞi;j J2:

For anisotropic TV-L1 model, the regularization term is

Rð∇uÞ ¼ TVAðuÞ ¼ ∑
1r i;jrN

J ð∇uÞi;j J1:

Through extensive numerical experiments, we found that ALM
[1] and FTVd [20] failed to reconstruct images seriously corrupted
by impulsive noise. The recovered images may contain some
random dirty points. We conjecture that isotropic total variation
term is sensitive to numerical errors and the stopping criterion
(mean-squared error, i.e., MSE) is not sufficient to measure true
image content.

Therefore, we combine isotropic and anisotropic TV regulariza-
tion terms to get a mixed TV regularizer:

Rð∇uÞ ¼ TVIðuÞþTVAðuÞ ¼ ∑
1r i;jrN

J ð∇uÞi;j J2þ ∑
1r i;jrN

J ð∇uÞi;j J1:

And we utilize metric Q [35] instead of MSE to measure the true
image content and decide when to stop the algorithm.

In the following, the isotropic TV-L1, anisotropic TV-L1 and joint
TV-L1 models are referred to as TVI-L1, TVA-L1, and TVJ-L1 models,
respectively.

2.1. Metric Q

Usually, MSE is used as the metric for measuring the closeness
of two variables and determines when to stop the algorithm.
However, MSE does not take the structure of an image into
account and stops the algorithm at the wrong time. Therefore,
we turn to metric Q [35], and this measure is properly correlated
with noise level, sharpness and intensity contrast of the structured
regions of an image.

As we all know, image structure can be measured effectively by
image gradients. For an image u, the gradient matrix over an N � N
window W is denoted as G. The corresponding gradient covariance
matrix is C ¼ GTG. By calculating the local dominant orientation via
computing singular value decomposition of G, we can get impor-
tant information about the content of the image patch W [36,37]

G¼USVT ¼U
s1 0
0 s2

 !
½v1 v2�T : ð2Þ

where U and V are both orthonormal matrices. Vector v1 repre-
sents the dominant orientation of the local gradient field, and
v2 describes the dominant “edge orientation” of this patch.
The singular values s1Zs2Z0 represent the energy in the direc-
tions v1 and v2. Then metric Q [35] is defined as

Q ¼ s1
s1�s2
s1þs2

: ð3Þ

Fig. 1 shows that higher SNRs can be obtained using metric Q other
than MSE in image restoration.

2.2. Augmented Lagrangian method for TVA-L
1 restoration

We extend augmented Lagrangian method for TVI-L1 restora-
tion [1] to TVA-L1 model. Two auxiliary variables pAS, vAV are
introduced to eliminate the nonlinearity for u, where V represents

Fig. 1. Signal–noise-ratio of lena obtained by using different stopping rule: MSE
and metric Q.
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