
Special Section on CAD/Graphics 2013

Effective traversal algorithms and hardware architecture for pyramidal
inverse displacement mapping

Hyuck-Joo Kwon a, Jae-Ho Nah b, Dinesh Manocha b, Woo-Chan Park a,n

a Department of Computer Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
b University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

a r t i c l e i n f o

Article history:
Received 5 August 2013
Received in revised form
12 October 2013
Accepted 19 October 2013
Available online 6 November 2013

Keywords:
Graphics processors
Hardware architecture
Displacement mapping
Image pyramid

a b s t r a c t

We present an effective traversal algorithm and a hardware architecture to accelerate inverse displace-
ment mapping. This includes a set of techniques that are used to reduce the number of iterative steps
that are performed during inverse displacement mapping. For this purpose, we present two algorithms
to reduce the number of descending steps and two algorithms to improve the ascending process.
All these techniques are combined; we observe up to 66% reduction in the number of iterative steps as
compared to other pyramidal displacement-mapping algorithms. We also propose a novel displacement-
mapping hardware architecture based on the novel techniques. The experimental results obtained from
the FPGA and ASIC evaluation demonstrate that our novel architecture offers many benefits in terms of
chip area, power consumption, and off-chip memory accesses for mobile GPUs.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Displacement mapping is a widely used computer graphics
technique that shows the effect of the actual movement of
geometric points according to a given height field. Modern GPUs
offer hardware support for displacement mapping [1–3], and it is
widely used to convey depth and details. However, displacement
mapping is regarded as more expensive than other mapping
techniques, as it involves dealing with a lot of additional geometry
and therefore has a high computational load.

Inverse displacement-mapping [4] algorithms, such as parallax
mapping [5], parallax occlusion mapping [6,7], relief mapping [8,9],
and pyramidal displacement mapping [10–12], have been proposed
to improve the performance of displacement mapping. These
approaches can determine the intersection point between a ray
and a height field by projecting the ray on the height field without
changing the geometry. Moreover, inverse displacement mapping
has been widely used in CPU and GPU implementations [13].

State-of-the-art methods for inverse displacement mapping
can be categorized into two classes [12,13]: approximation
(unsafe) and accurate (safe) algorithms. The approximation algo-
rithms, such as parallax occlusion mapping and relief mapping, are
fast, but are relatively low-accuracy: there is no guarantee that
they will find the correct intersection. A more accurate algorithm
that has been proposed in [10–12,14,15] is the per-pixel ray-tracing

technique with an image pyramid. The pyramidal displacement
map is an image pyramid of the mipmap consisting of many levels
of sub-images. By gradually descending from the root level to the
leaf level of this map, the accurate intersection point between a
ray and a height field can be computed. In [10], visiting a node one
level down or visiting a neighbor node using node crossing occurs
during the traversal of an image pyramid. Meanwhile, Tevs et al.
[12] and Drobot [15] proposed ascending techniques for effective
empty-space skipping, which reduced the number of iteration
steps for traversal at grazing angles compared with [10]. Dick et al.
[16] applied a pyramidal mipmap to GPU ray casting for terrain
rendering.

According to [10,12], pyramidal displacement mapping pro-
vides several advantages over other accurate algorithms, such as
relaxed cone stepping [17] and safety zone techniques [18–20].
First, pyramidal displacement mapping has lower memory
requirements and needs only a simple mipmap construction; the
other methods require a long off-line preprocessing time and have
large memory requirements. Thus, pyramidal displacement map-
ping is more suitable for large-scale or dynamic height fields.
Second, pyramidal displacement mapping provides better image
quality than relaxed cone stepping because relaxed cone stepping
can miss thin geometry [12].

Main results: In this paper, we present a set of improvements to
maximize the traversal performance of pyramidal displacement
mapping. Our approach consists of four sub-algorithms: start-level
decision, multi-level down, selective level-up, and coherent level-up.
The first and second sub-algorithms effectively reduce the required
number of iteration steps at front angles. The start-level decision

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cag.2013.10.024

n Corresponding author. Tel.: þ82 2 3408 3752; fax: þ82 2 3409 3755.
E-mail addresses: pwchan@sejong.ac.kr, pwchan@sejong.edu (W.-C. Park).

Computers & Graphics 38 (2014) 140–149

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.10.024
http://dx.doi.org/10.1016/j.cag.2013.10.024
http://dx.doi.org/10.1016/j.cag.2013.10.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.10.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.10.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.10.024&domain=pdf
mailto:pwchan@sejong.ac.kr
mailto:pwchan@sejong.edu
http://dx.doi.org/10.1016/j.cag.2013.10.024


algorithm directly calculates the start traversal level of an image
pyramid using only the ray information, and the multi-level down
algorithm descends multiple levels at one time before the first node
crossing. Both algorithms can be used simultaneously. The third and
fourth sub-algorithms improve the ascending process of [12,15] by
removing unnecessary level switching. The selective level-up algo-
rithm ascends a level only if the predicted intersection point is not
located in the neighbor node in the node crossing. The coherent
level-up algorithm ascends a level when the consecutive node
crossing at the same level occurs. The former is suitable for
dedicated hardware architecture due to low iteration steps and the
latter is suitable for current programmable GPUs due to its simpli-
city. According to our experimental results on a NVIDIA GTX460
GPU, the combination of the presented sub-algorithms increases
frame rates by up to 85% and 56% compared to [10] and [12],
respectively. More importantly, our approach is more robust for both
front and grazing angles than previous algorithms [10,12]. This
feature helps to maintain frame rates in interactive graphics applica-
tions (e.g., games).

We also present a hardware architecture consisting of a height-
map traverse pipeline and a texture-mapping unit. The traverse
pipeline was specially designed to accelerate the presented tra-
versal algorithms. To evaluate the feasibility of our architecture,
we integrated the presented hardware unit into an existing ray-
tracing hardware architecture [21,22]. This approach can also be
combined with current programmable GPUs, which are primarily
designed for rasterization. According to our ASIC evaluation, our
hardware architecture can achieve real-time performance with
fewer hardware resources, memory accesses, and lower power
consumption. Thus, our proposed hardware unit has high potential
utility in desktop/mobile GPUs.

The rest of the paper is organized in the following manner. We
give an overview of pyramidal displacement mapping in Section 2.
In Section 3, we present a set of improved traversal algorithms. In
Section 4, we present the hardware architecture and its imple-
mentation. In Section 5, we provide the experimental results.

2. Pyramidal displacement mapping

A pyramidal displacement map is a quad-tree image pyramid
created through a pre-computing process. An image pyramid is a
hierarchical collection of sub-level images from 20�20 to 2n�2n,
where n is the maximum level. The original displacement map
data might be specified as mipmap level 0, so that each leaf texel
(or node) indicates a displacement value for the actual surface. In
the upper-level image, each inner texel (i, j) is obtained by storing
the maximum value among the four texels ð2i;2jÞ; ð2iþ1;2jÞ;
ð2i;2jþ1Þ, and ð2iþ1;2jþ1Þ in the lower-level image. Thus, the
root texel denotes the globally maximum height value, whereas an
inner texel indicates the locally maximum height value [10,13].

To find the accurate intersection point between a ray and a
height field, the image pyramid is traversed from root level n and
leaf level 0. An example of this process is shown in Fig. 1. First, at
the texture coordinate P of the ray, the height value d1 of the
image pyramid's root level is read. If the current position P of the
ray is advanced to P1 where the ray and d1 meet, the image
pyramid is descended by one level. Then, the height value d2 of the
current mipmap level is read at P1. If d2 is greater than d1; P1 is
advanced to P2 where the ray and d2 meet, and the image pyramid
is descended by one level; otherwise, the position P1 does not
move, but the image pyramid is descended by one level. This
process is repeated until it reaches the leaf level.

While the image pyramid is searched, the ray cannot be
advanced over the boundary of the current node, because we
have no information out of the current node. To address this
problem, we must check whether the advanced position of the ray
lies inside the boundary of the current node. If it crosses, the ray is
moved to the boundary of the crossed node. This process is called
“node crossing” and the neighbor node is visited as a result.

In [12,15], traversal algorithms were proposed to reduce the
number of node crossings in [10] through ascending the mipmap
level. Tevs et al.'s method [12] ascends the mipmap level by one in
cases where the ray resides at a node boundary divisible by two.
This reduces an unnecessary level ascension when traversing to
sibling nodes. In contrast, Drobot's method [15] simply performs
the mipmap level ascension if node crossing occurs. This algorithm
costs very little to implement, but it may cause an unnecessary
level ascension. According to our experiments, [12] is faster than
[15] in general cases. Therefore, we will only consider [12] when
we discuss level-up algorithms.

3. Proposed traversal algorithm

Fig. 2 shows the processing flow of the proposed traversal
algorithm, which consists of three main steps. In the first step, the
algorithm proposed in Section 3.1 determines the start level of the
traversal for the generated ray. This process mainly consists of
end-position calculations and start-level decisions. In the second
step, the traversal to find the intersection point between the ray
and the height field is accomplished from the start level. The
process flow varies by the occurrence of node crossings. If node
crossing occurs, the level-up method proposed in Section 3.3 is
applied; otherwise, the level-down method in Section 3.2 is
applied. Lastly, when the traversal finishes, the target texture
coordinate is calculated using the intersection point between the
view vector and the height map.

3.1. Start-level calculation

The previous traversal algorithms for image pyramids such as
[10,12] initiate the traversal from the root level. The proposed

P

d1

P2

d2
P1

P5

d5

P P

1x1(root)
2x2
1x1(root)

16x16(leaf)

2x2
1x1(root)

Fig. 1. An example of the traversal process of the pyramidal displacement map.

H.-J. Kwon et al. / Computers & Graphics 38 (2014) 140–149 141



Download English Version:

https://daneshyari.com/en/article/441934

Download Persian Version:

https://daneshyari.com/article/441934

Daneshyari.com

https://daneshyari.com/en/article/441934
https://daneshyari.com/article/441934
https://daneshyari.com

