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a b s t r a c t

Feature-preserving filtering is a fundamental tool in computer vision and graphics, which can smooth
input signal while preserving its sharp features. Recently, a piecewise smooth model called L0 gradient
minimization, has been proposed for feature-preserving filtering. Through optimizing an energy function
involving gradient sparsity prior, L0 gradient minimization model has strong ability to keep sharp
features. Meanwhile, due to the non-convex property of L0 term, it is a challenge to solve the L0 gradient
minimization problem. The main contribution of this paper is a novel and efficient approximation
algorithm for it. The energy function is optimized in a fused coordinate descent framework, where only
one variable is optimized at a time, and the neighboring variables are fused together once their values are
equal. We apply the L0 gradient minimization in two applications: (i) edge-preserving image smoothing
(ii) feature-preserving surface smoothing, and demonstrate its good performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in computer vision and graphics require estimat-
ing some spatially varying quantity from noisy raw data. A main
property of such quantity is piecewise smoothing: they should vary
smoothly almost everywhere except at the sharp features that should
be preserved. For this purpose, feature-preserving filtering was
proposed, and became a fundamental tool in many applications.

Meanwhile, feature-preserving filtering is inherently challen-
ging, because it is difficult to distinguish features from noise. There
exist some different feature-preserving filtering methods, which
follow the same energy minimization framework with a data term
and a smooth term. The data term measures the disagreement
between the filtered signal and the original signal, while the
smooth term measures the extent to which the filtered signal is
not piecewise smooth. The design of the data term is usually
straight forward. For instance, the squared L2 distance between the
filtered signal and the original signal is often used. The choice of
the smooth term is a critical issue.

A key observation is that, if a signal is piecewise smooth, most of
the gradients tend to be small or even zero, and large gradients only
appear at the sharp features. This gradient sparsity prior brings us a
great help to design the smooth term. A representative work is total
variation [1], where the smooth term is the L1 norm of gradient.

Recently, Xu et al. [2] use L0 term instead of L1 term to directly
measure the gradient sparsity in the context of image smoothing,
and achieve some promising results. Compared with L1 norm, L0

norm can obtain more sparse solution. Some mathematical ana-
lysis [3] have shown that, under certain conditions, there is a
formal equivalence between L1 norm and L0 norm. But this
equivalence does not hold in our case. Gradient with L1 norm or
L0 norm will lead to completely different solution, as validated by
our experimental results.

Although L0 gradient minimization is very suitable for feature-
preserving filtering, it is indeed a non-convex problem. Xu et al. [2]
give an approximation of this problem with a variational method.
Through introducing a set of auxiliary variables related to gradients,
the original non-convex problem is decomposed to a sequence of
computationally tractable L0–L2 problems. The sparsity of auxiliary
variables obtained by L0 minimization is expected to be transferred
to the gradients through L2 minimization. However, since L2 norm
tends to severely penalize outliers and propagate the residual
uniformly, the sparsity may be corrupted in transferring. Thus the
gradients obtained by their method are not sparse enough.

In this paper, we propose a new approximation algorithm for
L0 gradient minimization problem. Our algorithm is based on a
fused coordinate descent framework. It can obtain a solution
with good gradient sparsity and sufficiently close to the original
input. We apply the L0 gradient minimization in edge-preserving
image smoothing and feature-preserving surface smoothing. We
compare our method with some existing feature-preserving
filtering methods, which show that our method produces better
results.

The rest of paper is organized as follows. Section 2 reviews
some related work, Section 3 introduces our algorithm for L0
gradient minimization, and Section 4 presents some applications
in image smoothing and surface smoothing. Finally, we conclude
our work in Section 5.
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2. Related work

Edge-preserving image smoothing: A good edge-preserving
image smoothing method should not blur the edges that are vital
for neural interpretation to make the best sense of the scene,
while smooth the regions between such edges. Bilateral filtering
[4] is a traditional method dealing with this problem, which
extends the concept of Gaussian smoothing by re-weighting
the filter coefficients with their corresponding relative pixel
intensities. And several variants of the bilateral filtering have been
proposed [5–7]. Anisotropic diffusion [8] achieves edge-preserving
smoothing by involving an edge-stopping function to make
smoothing take place only in the interior of regions without
crossing edges. Farbman et al. [9] formulate this problem in a
weighted least square framework, which is more flexible com-
pared with local filtering such as bilateral filtering. Rudin et al. [1]
propose total variation, which utilizes the gradient sparsity
enforced by an L1 penalty term to do edge-preserving smoothing.
Xu et al. [2] use an L0 penalty term to directly measure gradient
sparsity, and their method has a stronger ability to preserve edges.
There also exist some methods depending on local features [10,11].
Our method is a global estimation process.

Feature-preserving surface smoothing: To preserve the sharp
features of surface, anisotropic methods are often used. Bajaj and
Xu [12] extend the anisotropic diffusion [8] in image processing to
3D surface. Hildebrandt and Polthier [13] propose a prescribed
mean curvature flow to preserve surface features. Bilateral filtering
[4] is also an anisotropic smoothing method, and it has been
extended to surface smoothing by Fleishman et al. [14] and
Jones et al. [15]. Their methods average the vertex position in a
neighborhood using a weight function of both spatial difference
and vertex difference. There is a body of work that decouple
normal and vertex, i.e. firstly filter surface normals and then
update vertex positions from the filtered normal field. Compared
with vertex updating, normal filtering has a greater impact on final
result. Yagou et al. propose to use mean and median filters [16] for
facet normals, and later use alpha-trimming filters [17]. Sun et al.
[18] filter the facet normals within local neighborhood, weighted
by the normal difference. Zheng et al. [19] improve on this method
by applying bilateral facet normal filtering, considering both
normal and spatial difference. Most recently, He and Schaefer
[20] introduce an area-based edge operator, and adopt it in L0
minimization using Xu et al.'s solver [2]. Our mesh smoothing
method belong to normal-vertex decoupling scheme, and L0
gradient minimization is applied in the facet normal filtering step.

3. L0 gradient minimization

Let g be the input signal and f be its filtered result. The
gradients of f are denoted by ∇f . The energy function of L0 gradient
minimization is defined as follows:

min
f

jf �gj2þλj∇f j0 ð1Þ

where the data term is the squared L2 distance between f and g,
the smooth term is the L0 norm of ∇f , and λ is a non-negative
parameter controlling the weight of the smooth term. The L0 norm
of a vector is the number of non-zero value, which directly
measures the sparsity. However, this term is difficult to optimize
due to its non-convex and non-derivative nature. Traditional
optimization techniques such as gradient descent are no longer
applicable.

In Section 3.1, we briefly review L0–L2 iteration algorithm
proposed by Xu et al. [2] for Eq. (1). In Section 3.2, we introduce
our algorithm. Finally, we show the experiments and comparisons
with some existing feature-preserving methods in Section 3.3.

3.1. L0–L2 iteration algorithm

Through introducing a set of auxiliary variables δ, the original
minimization problem (Eq. (1)) then becomes

min
f ;δ

jf �gj2þβj∇f �δj2þλjδj0 ð2Þ

where β is a parameter to control the similarity between the
auxiliary variables δ and their corresponding gradients ∇f .

Eq. (2) can be solved with an alternating optimization. First, δ is
optimized with f fixed

min
δ

j∇f �δj2þλ
β
jδj0 ð3Þ

This equation can be spatially decomposed to a set of single
variable function minimization. And each element δi has the
following closed form:

δi ¼
0 if ∇f io

ffiffiffiffiffiffiffiffi
λ=β

p
∇f i otherwise

(
ð4Þ

Then, f is optimized with δ fixed

min
f

jf �gj2þβj∇f �δj2 ð5Þ

The equation is quadratic and a global minimum can be easily
found by gradient descent.

L0 minimization (Eq. (3)) and L2 minimization (Eq. (5)) alternate
until convergence is reached. After L0 minimization, δ has a very
high degree of sparsity. Next, L2 minimization attempts to force ∇f
to match δ. Indeed, the L2 term tends to severely penalize outliers
and propagate the residual in the energy function uniformly. This
property of the L2 term will lead to failure of sparsity transfer from
δ to ∇f in Eq. (5).

To substantiate our claim, we input a one-dimensional noisy
signal ranging from 0 to 1, and set λ to 0.001, β to 5. After iterations
of L0–L2 minimization until convergence, the auxiliary variables δ
are shown in Fig. 1(a) and the gradients of the filtered signal ∇f are
shown in Fig. 1(b). It is clear that ∇f do not share the good sparsity
with δ. In Xu et al.'s experiments [2], β is set as a large fixed value
1e5 to enhance the sparsity, which means most energy of the
function is spent on matching ∇f with δ. In this paper, we provide
another idea for solving Eq. (1) and we will give details in the next
subsection.

3.2. Our algorithm

Our approximation algorithm here is basically built on coordi-
nate descent [21]. Coordinate descent minimizes the energy
function by solving a sequence of scalar minimization subpro-
blems cyclically. Each subproblem performs line search along one
coordinate direction with the others fixed. Coordinate descent is
efficient in the situation where subproblems can be solved quickly.

However, according to the proposition of Bertsekas [22], every
minimum of successive coordinate minimization of a continuouslyFig. 1. The final value of variables δ and ∇f obtained by L0–L2 iteration algorithm.
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