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a b s t r a c t

In this paper, we present an interactive approach for shape co-segmentation via label propagation. Our
intuitive approach is able to produce error-free results and is very effective at handling out-of-sample
data. Specifically, we start by over-segmenting a set of shapes into primitive patches. Then, we allow the
users to assign labels to some patches and propagate the label information from these patches to the
unlabeled ones. We iterate the last two steps until the error-free consistent segmentations are obtained.
Additionally, we provide an inductive extension of our framework, which effectively addresses the out-
of-sample data. The experimental results demonstrate the effectiveness of our approach.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there have been increasing interests in shape
co-analysis, i.e., simultaneously analyzing a set of shapes. One of
the most fundamental problems in this field is co-segmentation.
Different from the traditional segmentation tools which treat
shapes individually, co-segmentation approaches process shapes
from an input set in a batch, and generate segmentations carrying
consistent semantics across the shapes. The consistent segmenta-
tion has demonstrated great utility in modeling [1,2], shape
retrieval [3,4], texturing [5], etc.

Previous attempts for solving this problem can be classified into
three categories as supervised, semi-supervised and unsupervised.
The supervised ones [5,6] take advantages of manually labeled
training sets to generate consistent segmentation results. However,
the accuracy of the results relies on the training sets, and not
surprisingly, the training process is tedious and time consuming.
The unsupervised methods [7,8] generally build their approaches on
the patch-level. These methods have superior performance, but the
results hinge upon the in-sample data.

Recently, Wang et al. [9] presented a semi-supervised learning
method with the aid of constrained clustering, where the user can
actively assist in the co-segmentation process by assigning pair-
wise constraints like must-link and cannot-link. This approach can
generate error-free results with a sparse set of constraints. How-
ever, as some authors [10] mentioned, pairwise constraints are not
expressive to the users. In addition, their approach is a transduc-
tive algorithmwhich does not handle with the out-of-sample data,

i.e., given a new datum, it needs performing the algorithm over the
whole pipeline, which is ineffective.

In this paper, we address the above issues by introducing an
interactive shape co-segmentation method. Our motivation drives
from label propagation which propagates labels through the
dataset along high density areas defined by unlabeled data. Our
method allows the users to participate in the co-segmentation
procedure, and is built upon the patch-level, which guarantees the
high speed. Specifically, starting from over-segmenting a set of
shapes into primitive patches, we allow the users to assign labels
to some patches, and then propagate the labels from these patches
to the unlabeled ones. We iterate the last two steps until the error-
free consistent segmentations are obtained.

In addition, as mentioned previously, when building their appro-
aches on the patch-level, state-of-the-art methods [7–9] are effective
in dealing with in-sample dataset in their respective problem
domains, but all these methods have not explored the out-of-sample
data. We investigate the out-of-sample issue by introducing an
inductive extension of our pipeline, where the new datum can be
labeled effectively.

Comparing with the state-of-the-art algorithms, our approach
is featured as follows:

� Intuitive: We provide an intuitive user interface. For the users to
directly assign labels is more expressive than the pairwise
constraints.

� Inductive: We introduce an inductive extension of our algo-
rithm to deal with out-of-sample data.

� Error-free: We can achieve error-free results depending on the
input dataset and the labels given by the users.

� Efficient: Our approach is graph-based, but requires no extra
eigen-decomposition, which is different from the unsupervised
methods [7,8].
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The remainder of this paper is organized as follows. We review
the related work in Section 2. We present the details of the
proposed algorithm in Section 3. We show some experimental
results on benchmark datasets in Section 4, followed by conclu-
sions and future work in Section 5.

2. Related work

In this section, we provide a brief review of the existing work
on shape co-segmentation, interactive segmentation and label
propagation.

Shape co-segmentation: Shape co-segmentation refers to simul-
taneously segmenting a set of shapes into meaningful parts and
building their correspondence. The existing co-segmentation
methods can be classified into three categories: the unsupervised,
the supervised and the semi-supervised.

In the unsupervised setting, the early work reported by
Golovinskiy and Funkhouser [11] builds reliable correspondences
across segments of shapes using rigid shape alignment. However,
their approach cannot handle shapes with large variations.
Xu et al. [12] factor out the scale variation in the shape segments
by clustering the shapes into different styles, depending on the
scales of the shape parts. Still, their approaches are limited to the
shapes that can be properly aligned.

To overcome this limitation, Huang et al. [13] introduce an
optimization strategy for simultaneously optimizing the saliency of
each segmentation as well as consistency between segmentations.
However, due to the computational complexity, this approach does
not scale well for large datasets. Sidi et al. [7] present a descriptor-
based method that employs multiple feature descriptors to measure
the similarities of the segments and poses co-segmentation as a
clustering problem in a concatenated descriptor space. Because the
descriptors are independent of the pose and location of the shapes,
this method can handle shapes with rich variations in part composi-
tion and geometry. Instead of concatenating the different feature
descriptors into one vector, Hu et al. [8] propose a feature fusion
method to co-segment a set of shapes via subspace clustering.
However, these unsupervised techniques hinge upon the in-sample
data.

Kalogerakis et al. [5] present a supervised learning method to
simultaneously segment and label shapes. Their approach needs
prior knowledge learned from the training dataset, and has
demonstrated a labeling high accuracy on a broad class of shapes.
van Kaick et al. [6] optimize the previous method by incorporating
the prior knowledge to train a classifier. However, the above
supervised methods require a substantial number of manually
labeled training shapes, and the training set has a large impact on
the segmentation performance.

Very recently, Wang et al. [9] propose a semi-supervised method
where the user can actively assist in the learning process by
interactively providing inputs. The input consists of a sparse set of
pairwise constraints, which are marked as must-link and cannot-link
constraints. The authors show that a sparse set of constraints can
quickly converge toward an error-free result. However, the pairwise
constraints are not clearly expressed to the users. In addition, their
approach is a transductive algorithm that is ineffective at handling
out-of-sample data.

Interactive segmentation: Interactive shape segmentation appro-
aches are simple and intuitively help users express their intentions.
Consequently, they have received significant attention [14].

Many interactive techniques have been proposed. Some of them
require the user to specify a few points on the desired cutting contour
and then employ the geometric snake [15], scissoring [16,17], graph
cut [18] or some other method [19] to find the final cutting
boundaries. These methods are called boundary-based approaches.

In the last few years, a series of region-based approaches [20–22] have
been proposed, which take regional information as the input and
require a much smaller amount of user effort to complete the labeling
process for all of the unlabeled faces of a shape.

In this paper, rather than segmenting an individual shape, we
present an interactive region-based technique to simultaneously
segment a set of shapes in a consistent manner.

Label propagation: Label propagation was first introduced by Zhu
and Ghahramani [23]. This technique propagates the labels through
dense unlabeled regions and locates data with properties that are
similar to those of the labeled data. Their approach is graph-based,
which can be constructed straightforwardly by computing pairwise
similarities among all of the data. Due to its simplicity and robustness,
it has been used in processes such as patch labeling [24], image
segmentation [25], and image annotation [26].

Some authors [27,28] have tried to optimize the original label
propagation. Among them, Wang and Zhang [29] propose approx-
imating the graph with a set of overlapped linear neighborhood
patches (LNPs) and computing the edge weights in each patch using
the neighborhood linear projection. Our work is directly inspired by
the LNP. We apply this algorithm to our interactive shape co-
segmentation setting.

3. Algorithm

3.1. Overview

Define a set of shapes S¼ fs1; s2;…; sNg, where si represents the
i-th shape and N is the total number of shapes. Our algorithm
simultaneously produces segments of the set of shapes S and
builds their correspondences across these segments.

The pipeline of our approach is illustrated in Fig. 2. First, the
algorithm pre-processes the set of shapes by partitioning the
dataset into primitive patches and building a graph that represents
the geometric similarities across them. Then, the user interactively
labels some patches, which are used as initial seeds that guide the
iterative propagation to find labels for the others.

Our algorithm is an iterative approach. Each iteration includes two
steps: user interaction and label propagation based on the user input.
These steps repeat until satisfactory results are obtained. Additionally,
we apply an extension to the pipeline to handle out-of-sample data.

We discuss the preprocessing step in the next section, the label
propagation in Section 3.3, and the inductive extension in Section 3.4.

3.2. Preprocessing

In this step, we start by over-segmenting the input shapes, where
normalized cuts [30] are employed to decompose each shape si into
primitive patches. In our settings, the number of patches per shape is
set to 30. Let P ¼ fp1; p2;…; pMg be the set of patches from all of the
shapes; it is clear that M¼30 N. Fig. 1 gives an example of our over-
segmentation results.

Our approach associates the representation of relations between
the patches with graphs. We represent this graph in matrix form, i.e.,
by constructing an affinity matrix W whose entries wi;j carry the
similarities of pi and pj. Thus, to measure the similarities among
patches, we first choose five robust and discriminative shape descrip-
tors to extract extrinsic geometric information about the patches;
shapes can be informatively represented based on these data. These
widely recognized descriptors are the Shape Diameter Function (SDF)
[31], the Conformal Factor (CF) [32], the Shape Contexts (SCs) [33,34],
the Average Geodesic Distance (AGD) [35], and the geodesic distance
to the base of the shape (GB) [7]. The descriptors are all defined on the
mesh faces, so no additional conversions are required to make them
mutually representationally compatible. Then, to describe the patches
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