
Special Section on CAD/Graphics 2013

A continuation algorithm for planar implicit curves with singularities

Abel J.P. Gomes n

Instituto de Telecomunicações, Universidade da Beira Interior, Portugal

a r t i c l e i n f o

Article history:
Received 4 August 2013
Received in revised form
6 November 2013
Accepted 6 November 2013
Available online 21 November 2013

Keywords:
Implicit curves
Continuation methods
Newton corrector
Singularities
Critical points

a b s t r a c t

Continuation algorithms usually behave badly near to critical points of implicitly defined curves in R2,
i.e., points at which at least one of the partial derivatives vanishes. Critical points include turning points,
self-intersections, and isolated points. Another problemwith this family of algorithms is their inability to
render curves with multiple components because that requires finding first a seed point on each of them.
This paper details an algorithm that resolves these two major problems in an elegant manner. In fact, it
allows us not only to march along a curve even in the presence of critical points, but also to detect and
render curves with multiple components using the theory of critical points.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A classical problem found in computer graphics is to translate
an implicit expression (e.g., the one representing the hyperbola
9x2�4y2�72xþ8yþ176¼ 0) into the graphical form. By algebraic
manipulation of this kind of expressions with two variables, it is
possible to solve for y in terms of x, fromwhere we are able to plot
points (x,y) on the curve. However, this approach does not
generalize easily to high order polynomials and is impracticable
for general analytic expressions such as, for example, transcen-
dentals of the form y sin xþx cos y¼ 1. Curves defined by general
analytic expressions are called implicitly defined curves or, simply,
implicit curves.

More formally, a planar implicit curve C is the zero set of some
real function f from R2 to R, that is, C¼ fxAR2 : f ðxÞ ¼ 0g. The main
categories of algorithms for rendering implicit curves are the
following:

� Implicit-to-parametric conversion: The generative nature of para-
metric curves makes them suited to rendering; hence, the implicit-
to-parametric conversion [1,2]. However, this technique is not
always feasible because many implicit curves cannot be globally
parameterized, regardless of whether they are smooth or not.

� Curve continuation: The idea behind curve continuation (or track-
ing) algorithms is to generate a sequence of points on the curve
in a way similar to parametric curves (see, for example, [3–5]).
In computer graphics, Bresenham's algorithm for rendering circles

was the former algorithm to adopt this approach. These methods
are attractive because they confine the calculation of the next point
to the neighborhood of current point. But some components of the
curve may be missed out unless we are capable of finding a
starting point on each component. Even worse is the fact that
tracking algorithms may break down on singularities.

� Space subdivision: The leading idea of this approach is to
subdivide the rectangular domain DAR2 into subregions in the
attempt to find the curve, discarding then those regions that are
not crossed by the curve. The recursive subdivision terminates as
long as the set of small regions that approximate the curve
satisfy a specific criterion (curvature, distance, etc.) [2,6–8].
Subdivision algorithms are often combined with interval arith-
metic [9,10], affine arithmetic [11,12], or variants [13] in order to
guarantee that the traced curve exhibits its topology correctly.

� Symbolic computation: Unlike continuation and subdivision
algorithms that are based on floating-point computations (i.e.,
numerical algorithms) to sample curves, symbolic algorithms
are exact because they handle symbols and symbolic expres-
sions. In the literature, we find a number of these algorithms
for algebraic curves, but only a few apply to trigonometric
curves [14]. As expected, we also find symbolic algorithms to
determine the topological type of a curve [15–17], as well as
singularities [18,19], and roots [20–24]. But, symbolic algo-
rithms are slower than numerical algorithms.

The algorithm described in this paper fits in the category of
continuation algorithms. Thus, the algorithm produces a piecewise
linear approximation (e.g., a number of polylinearized contours or
components) of an implicit curve on the fly and in a progressive
manner.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cag.2013.11.006

n Tel.: þ351 275 242081.
E-mail address: agomes@di.ubi.pt

Computers & Graphics 38 (2014) 365–373

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.11.006
http://dx.doi.org/10.1016/j.cag.2013.11.006
http://dx.doi.org/10.1016/j.cag.2013.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.11.006&domain=pdf
mailto:agomes@di.ubi.pt
http://dx.doi.org/10.1016/j.cag.2013.11.006


The algorithm applies to analytic curves, including algebraic
curves and transcendental curves (e.g. transcendental and expo-
nential functions). Its main contributions lie in the fact that the
algorithm is capable of dealing with singular points, detecting and
tracing multiple components of a given curve, regardless of
whether they are sign-variant components or not, as well to
prevent drifting and looping phenomena in tracing implicit curves.

The remainder of this paper is organized as follows. Section 2
approaches implicit curves as level sets of surfaces in R3 in order
to provide insight on the geometry of curves, providing then
details about the mathematics and the core of the algorithm.
Section 3 extends the algorithm to non-manifold implicit curves,
including those having 0- and 1-dimensional singular sets and
multiple components. Section 4 provides some relevant details
concerning computing assets and time performance. Finally, some
conclusions are drawn in Section 5.

2. The algorithm for manifold curves

An implicit curve f ðx; yÞ ¼ c in R2 can be thought of as a contour
resulting from the intersection of a plane z¼c and a surface
z¼ f ðx; yÞ in R3, where f : R2-R is a real function of two real
variables. Taking into consideration that every value of the func-
tion z¼ f ðx; yÞ can be represented as a point height value z¼ f ðx; yÞ
above of the point (x,y) in the plane XY, we easily see that the
result is a surface with ups (hills) and downs (valleys).

The initial step in tracing an implicit curve f ðx; yÞ ¼ c is to find a
seed point of the level curve with height c, after which we
determine a sequence of curve points that allow us to polylinear-
ize and draw the corresponding contour. The computation of every
new curve point involves two steps: predictor and corrector. That
is, the current point is used to predict a point near to the curve,
being the predicted point then corrected to a new point of the
curve, which is the next point in the process of tracking the curve.
The prediction step uses the tangent vector obtained from the
gradient vector, whereas the correction step makes usage of a
numerical zero finder (e.g., Newton corrector).

Let us then start the tracking of the curve, taking into account
that dxðx; yÞ and dyðx; yÞ are the discrete partial derivatives given by
forward differences. Moving a x-step Δx from (x,y) to ðxþΔx; yÞ
results in a change in the z-direction given by Δx dxðx; yÞ; analo-
gously, a y-step from ðxþΔx; yÞ to ðxþΔx; yþΔyÞ originates a
change in the z-direction given by ΔydyðxþΔx; yÞ. Now, summing
up the above two height changes from (x,y) to ðxþΔx; yþΔyÞ yields
a point either under or above the plane z¼c where our curve lies
in. Taking this point back to this level plane in z-direction results in
a null overall change in z-direction, so we have

Δxdxðx; yÞþΔydyðxþΔx; yÞ ¼ 0: ð1Þ
But, using Eq. (1), we cannot express Δx in terms of Δy. To solve

this problem, we have to assume that dyðxþΔx; yÞ and dyðx; yÞ are
pretty close so that we are allowed to replace dyðxþΔx; yÞ by
dyðx; yÞ in (1) to get an efficient, but possibly worse, approximation
as follows:

Δx dxðx; yÞþΔy dyðx; yÞ ¼ 0: ð2Þ
from which we have

Δx ¼ �dyðx; yÞ
dxðx; yÞ

Δy and Δy ¼ �dxðx; yÞ
dyðx; yÞ

Δx: ð3Þ

In order to have a neat control on the tracking procedure, we have
to choose either x-direction or y-direction that minimises the distance
to the curve. We know this after computing the absolute values of the
components dxðx; yÞ, dyðx; yÞ of the discrete gradient. The correct axial
direction is the one given by minðjdxðx; yÞj; jdyðx; yÞjÞ; it only remains

to knowwhether it is forward or backward. Looking at (3), and letting

A¼ �dyðx; yÞ and B¼ dxðx; yÞ ð4Þ
we end up having

Δx ¼
A
B
Δy and Δy ¼

B
A
Δx: ð5Þ

Therefore, if jAj4 jBj, then we walk along the x-direction with a
pre-defined step Δ. To make sure we walk in the same direction as
A, we put

Δx ¼Δ signðAÞ and Δy ¼
B
A
Δx: ð6Þ

Otherwise, and assuming that Ba0, we take

Δy ¼Δ signðBÞ and Δx ¼
A
B
Δy: ð7Þ

The new predicted point ðxþΔx; yþΔyÞ of the curve takes over
the current point (x,y). Such a predicted point is then corrected
using the discrete Newton corrector.

Unlike other predictor–corrector algorithms, the computation
of the discrete tangent vector ðA;BÞ (steps 4–5 of Algorithm 1) is
not used to determine the next predicted point (i.e., the endpoint
of the tangent vector) directly, but just to determine how to walk
in both x- and y-directions, i.e., to determine the next stair step
that better approximates the curve. Therefore, during the predictor
stage, our algorithm behaves as a Bresenham-like algorithm in the
sense that, depending on the slope of the tangent at a curve point,
it steps forward first in the x-direction and then in the y-direction,
or vice-versa.

The corrector stage makes usage of a discrete Newton corrector
(i.e., which uses discrete derivatives) to ensure that the algorithm
does not break down at critical points. This is illustrated in
Algorithm 2, where the Newton correction that takes a point
toward a curve point is carried out in either the x-direction or the
y-direction (cf. lines 6 and 11 in Algorithm 2), resulting in a
staircase-like walking along the curve; hence the name of
Algorithm 1. The input variables f, D, and Δ of this algorithm
stand for the curve function, the boxed domain, and the step
length, respectively. Interestingly, Algorithm 1 is capable of ren-
dering some curves with singularities as, for example, the cuspidal
curve shown in Fig. 3(a), but not non-manifold curves featuring
nodes or self-intersections as those shown in Fig. 3(b) and (c).

Algorithm 1. PC algorithm for manifold curves.

1: Procedure STAIRCASE (f,D, Δ)
2: Determine one point (x,y) on the curve
3: while ðx; yÞAD do
4: A’�dyðx; yÞ ▹ first tangent component

5: B’dxðx; yÞ ▹ second tangent component

6: PREDICTORCORRECTOR(x,y,f,A,B, Δ)
7: LineToðx; yÞ ▹ draws a line segment

8: end while
9: end procedure

Algorithm 2. Predictor–corrector.

1: procedure PREDICTORCORRECTOR(x,yf,A,B, Δ)
2: if jBjo jAj then
3: Δx’Δ : signðAÞ
4: x’xþΔx ▹ predicted point (x,y)
5: y’yþΔx:BA ▹ see ð6Þ
6: y’NewtonYðx; y; f Þ ▹ corrector

7: else
8: Δy’Δ:signðBÞ
9: y’yþΔy ▹ predicted point (x,y)

A.J.P. Gomes / Computers & Graphics 38 (2014) 365–373366



Download English Version:

https://daneshyari.com/en/article/441954

Download Persian Version:

https://daneshyari.com/article/441954

Daneshyari.com

https://daneshyari.com/en/article/441954
https://daneshyari.com/article/441954
https://daneshyari.com

