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a b s t r a c t

Image denoising is an important issue in many real applications. Image denoising can be considered to be
recovering a signal from inaccurately and/or partially measured samples, which is exactly what
compressive sensing accomplishes. With this observation, we propose a general image denoising
framework that is based on compressive sensing theory in this paper. Most wavelet-based and total
variation based image denoising algorithms can be considered to be special cases of our framework. From
the perspective of compressive sensing theory, these algorithms can be improved. To demonstrate such
an improvement, we devise four novel algorithms that are specialized from our framework. The first
algorithm, which is for the synthetic case, demonstrates the considerable potential of our framework.
The second algorithm, which is an extension of wavelet thresholding and total variation regularization,
has better performance on natural image denoising than these algorithms. The third algorithm is a more
sophisticated algorithm for natural image with Gaussian white noise. The last algorithm addresses
Poisson-corrupted images. Compared with several state-of-the-art algorithms, our intensive experiments
show that our method has a good performance in PSNR (peak signal-to-noise ratio), fewer artifacts and
high quality with respect to visual checking.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Image denoising is a classical image processing problem. In
recent years, many advanced methods for image denoising have
been proposed, including total variation image regularization [1,2],
PDE-based image diffusion [3,4], wavelet thresholding [5], bilateral
filtering [6,7], non-local means [8,9], basis pursuit denoising [10],
BM3D [11], among others. These methods can perform image
smoothing/denoising as well as preserve edges to a certain extent.
However, each of these methods has certain shortcomings in
terms of image quality or computational efficiency. Non-local
means usually produce good image quality but at a relatively high
computational cost. PDE-based image diffusion and total variation
methods tend to result in piecewise constant regions on the
images, although they preserve strong edges. Wavelet threshold-
ing and basis pursuit denoising methods can reduce noise because
most natural images have sparse representation when expressed
in wavelets or a set of bases. However, they are likely to create
ripple artifacts. Bilateral filtering is an effective image denoising
method that is easy to implement, but it has not yet attained a
desirable level of applicability in terms of image quality. For details

of the techniques and performance comparisons, readers can refer
to the survey paper in [12].

In this paper, we propose a general image denoising framework
motivated by the total variation method, wavelet thresholding and
compressive sensing theory [13,14]. The word “general” here high-
lights the fact that many existing methods can be viewed as special
cases of our denoising framework. Our framework is sufficiently
flexible for addressing a wide range of images and noise. With a
carefully designed configuration, our specialized algorithms can attain
better performance in terms of the image quality or computational
complexity compared with several state-of-the-art image denoising
algorithms. In Sections 5–7, we will present the four specialized
algorithms to demonstrate the potential, flexibility and robustness of
our framework.

The contributions of this paper are summarized as follows:

1. A general image denoising framework is proposed. Many
previous algorithms can be considered to be special cases of
our framework. In other words, we can generalize many
existing approaches.

2. Under this framework, we can overcome certain shortages that
are present in existing approaches and obtain an improvement
in PSNR (peak signal-to-noise ratio) or visual quality.

3. Our framework is based on Compressive Sensing theory, which
enables us to introduce new insights into existing image
denoising algorithms.
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4. From our framework, we derive four novel, specialized algorithms.
One algorithm is for the synthetic case, two of the remaining
algorithms are for natural images with Gaussian white noise, and
the last algorithm addresses Poisson-corrupted images.

2. Related work

Image denoising is a classical image processing problem that
has been studied for several decades. There has been a large
volume of literature dedicated to solving this problem. However,
providing an in-depth survey on this topic is not the primary focus
of this work. In short, we can briefly categorize image denoising
techniques into two classes that are closely related to our frame-
work: wavelet-based and regularization-based algorithms.

In the wavelet domain, the energy of a natural signal is
concentrated in a small number of coefficients; noise is, however,
spread over the entire domain. Hence, one common approach is to
reduce noise by thresholding the coefficients in the wavelet
domain [5]. For wavelet thresholding, a variety of techniques have
been proposed, for example, hard or soft, multiscale thresholding
[15], translation-invariant thresholding [16], and threshold-selection
methods, such as SURE thresholds [17]. Thresholding based on
orthogonal or biorthogonal wavelet transforms tends to create ripple
artifacts, while translation-invariant thresholding approach can
usually help to reduce these artifacts.

Image regularization is usually used to restore the latent image
from blurriness or degradation. If we assign the blur kernel to be
an identity matrix, then the image restoration process becomes an
image denoising problem. Typically, image regularization is
usually composed of two terms: the fitness term and the regular-
ization term, which are as follows:

arg min
u

1
2
‖u� f‖2þλJðuÞ ð1Þ

where f is the noisy image, and J � J denotes the l2 norm. The role
of the regularization term J(u) is to encourage or constrain the
solution of (1) to have a certain property. For example, if J(u) is the
total variation of u, then (1) is the famous total variation regular-
ization, which decreases the total variation of the image to remove
the noise. In addition, we can have many choices for J(u) [18], for
example, we can use the l2 norm (i.e., Tikhonov regularization),
maximum entropy regularization and l1 norm.

Recently, researchers have focused increasing attention on l1

regularization because it is closely related to wavelet thresholding
and compressive sensing. In fact, if J(u) is ‖Ψ u‖1, whereΨ is a tight
frame, then (1) is equivalent to wavelet soft thresholding. From the
perspective of compressive sensing theory, ‖Ψ u‖1 is an approx-
imation of ‖Ψ u‖0, which makes Ψu sparse. We usually want Ψu to
be sparse, but this characteristic cannot be obtained by l2 regular-
ization. Hence, l1 regularization is also called sparse analysis
approximation. Correspondingly, there is another approximation
approach called sparse synthesis approximation (also called the
basis pursuit denoising (BPND) method [10]) which assumes that
the signal has a sparse synthesis in a dictionary D¼ fϕpgpAΓ

. If D
is an orthonormal basis, then it is equivalent to a sparse analysis
approximation. This situation is, however, not the general case
when the dictionary is redundant [19]. In the algorithm, a large D
is likely to result in over-fitting, which means that part of the noise
is fitted by certain functions in the dictionary D. As a result, this
part of noise is included in the denoised result, and ripple
artifacts arise.

When using wavelet hard thresholding, we can usually obtain a
higher PSNR than with soft thresholding, but it is more likely that
ripple artifacts are created. In this regard, image regularization is

dedicated to avoiding oscillatory and ripple artifacts. The specia-
lized algorithms we proposed in our framework, see Section 6,
combine the unique strengths of these two approaches such that
we can obtain higher flexibility and robustness while attaining a
higher image quality.

3. Compressive sensing theory

The theory of compressive sensing (CS) demonstrates how a
subsampled signal can be faithfully reconstructed through opti-
mization techniques. If a signal x is sparse in a basis (or frame) Ψ ,
then it can be perfectly reconstructed from fewer measured
samples y with a very high probability, through the following
optimization [20]:

arg min
x

‖Ψx‖1 subject to Φx¼ y ð2Þ

where Φ is the measurement matrix.
In many practical applications, we cannot assume that the

signals are strictly sparse but still compressible. More precisely, we
assume that the nth largest entry of its coefficients in a frame Ψ
obeys jΨ ðxÞjðnÞrR � n�1=p, where R40 and p40. In this case,
there is a similar result that states that the signal x can be
approximately reconstructed with a high probability through the
following non-linear optimization [21]:

arg min
x

1
2
‖Φx�y‖2þλ‖Ψx‖1 ð3Þ

where λ40 is the regularization parameter that trades off
between the fitness term and the regularization term. There are
many numerical algorithms for the optimization problems (2) and
(3), such as NESTA [22], TwIST [23], FPC [24], and IHT [25], to
name a few.

It should be noted that not all Φ and Ψ are suitable for
compressive sensing. CS theory prefers a pair that has a low
coherence [13] which is defined by

μðΦ;Ψ Þ ¼
ffiffiffiffi

N
p

� max
1r ;jrN

j〈φk;ψ j〉j ð4Þ

A coherence ranges from 1 to
ffiffiffiffi

N
p

and reaches its maximum when
Φ and Ψ are the same.

4. General image denoising framework

It is well known that many natural images have a compact
representation when expressed in a convenient basis, such as with
wavelets. If we can obtain more precise measurements of the
original images than the corresponding noisy images, then we can
reconstruct the image well by CS theory. Thus, we propose a
general image denoising framework as follows:

arg min
u

1
2
‖Φu�Φf ‖2þλ‖Ψu‖1 ð5Þ

where f is the noisy image, and Φ is the measurement operator
that separates the noise and the latent image. Note that this
framework is very general, thus, we can choose suitable Φ and Ψ
to address specific images and noising. In particular, several
existing methods can be regarded as special cases of the proposed
framework. We divide them into two classes:

Total variation-based algorithms: If Ψ is the gradient operator
andΦ is the identical matrix, then Eq. (5) is the total variation (TV)
regularization [1]. If Ψ is the gradient operator and Φ is a wavelet
hard thresholding operator, then Eq. (5) is the method that is
proposed by Durand and Froment [26]. The TV regularization and
its variants recover an image that has a gradient vector that is as
sparse as possible. From the perspective of CS theory, if the image
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