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Measuring length and girth of a tubular shape by quasi-helixes
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a b s t r a c t

Length and girth are central to measure the size of tube shaped objects. This paper extends circular
helical curves to general tubular shapes and proposes a novel method for measuring their length and
girth. We call the extended circular helixes quasi-helical curves. A formal definition, as well as a set of
practical algorithms for quasi-helixes, is presented in this paper. Experimental results demonstrate that
our method is fast, intrinsic, insensitive to noises, invariant to triangulation and resolution. Furthermore,
quasi-helical curves can also be used in classifying 3D shapes and designing vector fields on surfaces of
revolution.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Measuring length and girth of tube shaped objects is useful in
many research fields including life science, computer vision
and industrial engineering. In Applied Physiology, researchers
observed exercise effects by automatically tracking of medial
gastrocnemius fascicle length [1]. In computer-aided industrial
design, girth measurement was used to determine fitting accuracy
on digital foot models [2,3]. It is also interesting to estimate
weights of digitalized animals based on length and girth measure-
ments [4].

Intuitively, we can simulate the measurement procedure with a
tape – finding a point p on a given tube shaped object and
computing a shortest closed curve Γ starting from and arriving
at p. In fact, Γ is locally shortest everywhere except at p and it
gives the girth of Γ's neighborhood. Sometimes people may wind
the tape around the object for many times (see Fig. 1) to get the
overall girth, i.e., the total length of Γ divided by the winding
number. Therefore, it is reasonable to assume that Γ should be
a geodesic except at only a few points.

To the best of our knowledge, Chen et al. [5] were the first to
propose a posture invariant measurement of human body based
on geodesic distance field. Their method takes 5 source points as
the input, i.e., the extreme points on the head, hands, and feet of a
3D human model. The skeleton curve is extracted by connecting
the barycenters of iso-contours. Finally, the length and girth of
each part can be obtained from the skeleton curve and the iso-
contours. However, we must point out that iso-contours are not
locally shortest and thus significantly different from geodesics; We
refer to [6] where Liu et al. systematically discussed the properties
of geodesic iso-contours.

In this paper, we propose a novel estimation approach based on
the practical measurement procedure. We extend circular helical
curves to general tube shaped surfaces. First, we cut the key
tubular part into a quad surface Q with geodesic boundaries, like
that achieved in the stripification technique proposed by Liu et al.
[7]. After gluing N copies of Q into a larger geodesic quad Q,
a geodesic Γ winding around the original tubular surface N times
is actually an open shortest path lying on Q. In fact, such a curve
has a close resemblance to a helix as far as geometric properties
are concerned and thus called a quasi-helical curve. Γ and its
skeleton curve respectively define the girth and length. Quasi-
helixes are geometrically invariant to triangulation, resolution and
posture change of the input model. Furthermore, quasi-helixes
have more applications including vector field design.

This paper is set out as follows. Section 2 reviews related work.
We detail the theoretical background of quasi-helixes in Section 3
and the algorithm pipeline in Section 4. Section 5 utilizes experi-
mental results to demonstrate the uses of quasi-helixes. Finally, we
discuss the limitations in Section 6 and draw the conclusion in
Section 7.

2. Related work

2.1. Previous research in applications of length and girth

In life science field, researchers use the length–girth relation-
ship to study the growth status and distinguish different types of
creatures [8,9]. For example, Irvine et al. [10] investigated the
influence of length and girth on dive duration of underyearling
southern elephant seals. In medical field, experts exploit length,
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girth and width to report the health status of infants [11,12] or
give a guidance for physical exercise. Another interesting topic is
to predict weight or sex from the length–girth relationship [4].
Length and girth are also useful in computer engineering and
computer vision fields.

2.2. Definition of length and girth

To our knowledge, an exact definition of length and girth is
unavailable on general 3D surfaces. Zhao et al. [2] suggested inter-
secting a prescribed girth plane with the given foot model. Their
method depends on the embedding space and cannot deal with
deforming objects. Some feature aligned parametrization methods
[13–15] can also be used to compute length and girth of tube shaped
objects, but they are sensitive to noises and local geometric features;
see Section 5. Chen et al. [5] proposed a posture-invariant method for
automatically computing length and girth based on the iso-contours of
the multi-source geodesic distance field. However, the iso-contours
are not locally shortest and thus different from practical measurement
procedure. Observing that a winding tape is geometrically similar to a
circular helix, we present a new type of curve, called quasi-helix, to
measure length and girth. Compared with existing geometric tools
[2,5,15,16], the quasi-helical curves are not only insensitive to noises
and local geometric features, but also invariant to triangulation,
resolution and posture change.

2.3. Computing open and closed geodesics

Sharir and Schorr [17] pioneered an algorithm to compute the
“single-source-all-destination” discrete geodesic on convex polyhedra
with an Oðn3 log nÞ time complexity. Later, Mitchell et al. [18] (MMP)
improved the time complexity bound to Oðn2 log nÞ by using the
“continuous Dijkstra” technique. Chen and Han [19] (CH) suggested
building a binary tree to encode all the edge sequences that can
possibly contain a shortest path, thereby improving the time complex-
ity to Oðn2Þ. Surazhsky et al. [20] extended the MMP algorithm to
compute approximate geodesics with bounded error. Xin and Wang
[21] improved the CH algorithm by exploiting a filtering theorem.
Liu [22] suggested a speed-up technique for the MMP algorithm [18]
based on an observation that the windows on a pair of half-edges can
be merged into one structure. Besides the exact algorithms, there are
also many algorithms [23–26] to approximate discrete geodesics.
Among them, the fast marching method [23], with an Oðn log nÞ time
complexity, has been widely used in the research community.

There are also a few algorithms discussing the closed geodesic
problem. Wu and Tai [27] proposed the discretized geodesic curva-
ture flow (dGCF) to compute geodesic loops on triangle meshes using
a level set formulation, and later, Zhang et al. [28] improved dGCF
by reducing the problem dimension. Xin et al. [29] discussed how to
efficiently compute an exact closed geodesic. They also studied a
special kind of closed geodesics that are relaxed at some vertex.

3. Theoretical background

Given a smooth surface S, equipped with a Riemannian metric g,
and two points s; tAS, the shortest path between s and t is defined to
the one with the minimum length among those connecting s and t.

A path ΓðtÞAS; tA ½0;1�; is a geodesic if and only if 8 tnA ½0;1�,
there exists an ε, such that the sub-segment Γ ¼ fΓðtÞ; tA ½0;1� \
½tn�ε; tnþε�g; is a shortest path on S.

A geodesic may self-intersect, but a shortest path cannot.
A shortest path must be a geodesic, but not vice versa. A common
technique for computing a shortest path is to (implicitly) find the
optimal one among candidate geodesics. Sometimes we may abuse
“shortest” and “geodesic” if there is no ambiguity in the context.

Definition 1. A patch Q is a part of the surface S. Q is called
a geodesic quad if Q is bounded by four shortest paths on S.

Since geodesics are well known to the research community, we
directly give the following conclusion without proofs.

Proposition 2. Given a geodesic quad Q that is part of the surface S,
any shortest path lying in Q is a geodesic in S.

As Fig. 2 shows, we cut a tubular surface S, bounded by two
shortest loops, into a geodesic quad Q along the shortest path
between s and t. After that, we glue N copies of Q together and
obtain a composite geodesic quad, which is quite similar to the
covering technique proposed by Campen et al. [14]. During this

Fig. 1. A circular helix and a quasi-helical curve. The red skeleton curve can be
obtained from the quasi-helical curve; see Section 4 for details. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Fig. 2. Proposition 3.

Fig. 3. Algorithm pipeline. (a) Computing the shortest path between two given points, typically feature points. (b) Extract the tubular shape between two section planes. (c)
Computing two relaxed shortest paths at the endpoints. (d) Separating the geodesic quad from the remaining part that is actually a topological disk. (e) Computing the quasi-
helical curve lying inside the geodesic quad. (f) Extracting the skeleton curve of the tube shaped object.
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