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a b s t r a c t

The Monte Carlo technique has been used to build up quantitative structure–activity relationships
(QSARs) for prediction of dark cytotoxicity and photo-induced cytotoxicity of metal oxide nanoparticles
to bacteria Escherichia coli (minus logarithm of lethal concentration for 50% bacteria pLC50, LC50 in
mol/L). The representation of nanoparticles include (i) in the case of the dark cytotoxicity a simplified
molecular input-line entry system (SMILES), and (ii) in the case of photo-induced cytotoxicity a SMILES
plus symbol ‘^ ’. The predictability of the approach is checked up with six random distributions of
available data into the visible training and calibration sets, and invisible validation set. The statistical
characteristics of these models are correlation coefficient 0.90–0.94 (training set) and 0.73–0.98
(validation set).

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nanomaterials become important components of modern every-
day life. This requires studies that would reveal their characteristics
and provide guidelines to facilitate their safe applications. Predictive
models for nanomaterials can be useful for theoretical and practical
reasons (Randic, 1991; Cosentino et al., 2000; Balaban et al., 2005;
Ivanciuc et al., 2006; Tetko et al., 2008; Bhhatarai et al., 2010; Das
and Trinajstic, 2010; Mitra et al., 2010; Duchowicz et al., 2011;
Furtula and Gutman, 2011; Afantitis et al., 2011; Toropov et al.
2012b,c; Liu et al., 2013; Cohen et al., 2013; Toropova and Toropov,
2014) to the same extend as models for “classic” substances
(organic, inorganic, organometallic) have been used.

Many of suggested approaches which are aimed to build up
quantitative structure–property/activity relationships (QSPRs/
QSARs) for nanomaterials were obtained with “classic” descriptors
(Fourches et al., 2010; Petrova et al., 2011), tested for “classic”
substances. However, (owing to the uncertainty of molecular

architecture that is related to nanomaterials), the development
of fresh “nanodescriptors” (Leszczynski 2010; Toropova and
Toropov, 2013) becomes a necessary task of modern computa-
tional approaches focusing on the problem. An attractive and
innovative alternative to “classic” descriptors are optimal descrip-
tors calculated using available eclectic data (Toropova et al., 2013;
Toropova and Toropov, 2013).

Optimal descriptors (Toropova et al., 2010, 2011, 2012a, Toropov
et al., 2010a,b, 2013a,b), could be considered as a transitional step
between “classic” and “nanodescriptors”. On the one hand, these
descriptors can be calculated with data on the molecular structure
(i.e. just as “classic” descriptors); but on the other hand, these
descriptors can be computed using eclectic information about a
substance, even without detailed data on its molecular structure
(Toropov et al., 2007; Toropova and Toropov, 2013).

However, data on various nanoparticles can be represented by
special strings which are encoded data on physicochemical and
biochemical conditions of impact of the nanoparticles. These
SMILES-like strings can be named “quasi SMILES”, since they
represent conditions in contrast of traditional SMILES which
represent solely the molecular structures.
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The paradigm for traditional QSPR/QSAR analyses could be
expressed as:

Endpoint¼F(Molecular Structure)
In the case of the nanomaterials the paradigm can be modified

as follows:
Endpoint¼F(Available Eclectic Data)
The available eclectic data can be (i) the molecular structure of

substances which are involved in phenomenon under considera-
tion; (ii) presence/absence of photo-inducing; and (iii) any other
circumstances which are able to have influence on the phenom-
enon under consideration (Toropova and Toropov, 2013; Toropov
and Toropova, 2014).

Consequently, one can define the following hybrid paradigm:
Endpoint¼F(Molecular Structure and Available Eclectic Data)
Since the above mentioned quasi SMILES are basis for establish-

ing of correlation between impacts (these are not only data on the
molecular structure, but any available eclectic data with influence
upon nanoparticles) which are defining the behavior of metal
oxide nanoparticles, these correlations can be named as “quasi-
QSARs” or “nano-QSARs”. In the present work, the only eclectic
factor is the presence or vice versa absence of photo-inducing,
however the number of eclectic components for the quasi-QSAR or
nano-QSAR can be larger (Toropova and Toropov, 2013; Toropov
and Toropova, 2014).

The aim of the present study is an attempt to build up united
QSAR model for dark cytotoxicity and photo-induced cytotoxicity
of metal oxide nanoparticles to bacteria Escherichia coli, using
optimal descriptors which are a mathematical function of atomic
composition and the conditions (i.e. the dark or the photo-
inducing).

2. Method

2.1. Data

The numerical data on cytotoxicity of metal oxide nanoparticles
to bacteria E. coli (the concentration of the nanoparticles that
proved to be fatal to 50% of the bacteria E. coli LC50, in mol/L) have
been taken from the literature (Pathakoti et al., 2014). The negative
decimal logarithm of the LC50 (pLC50) has been examined as the
endpoint. Six random distributions of the available data into
training and calibration sets (these metal oxide nanoparticles are
used to build up the model) and validation set (these metal oxide
nanoparticles are not involved to build up the model, they are used
to check up predictability of the model) are examined. All these
splits are prepared according to the following principles: (i) they
are random; (ii) the range of endpoints in each sub-set is similar to
ranges for other sub-sets; and (iii) these splits are not identical
(Table 1). The dark cytotoxicity and photo-induced cytotoxicity are
examined as an united endpoint, owing to application of the
model which is a mathematical function of atomic composition
and conditions (presence or absence of photo-inducing).

2.2. Optimal descriptors

In order to take into account the photo-induction, the symbol
‘^ ’ is used. Thus, SMILES used in this work are not equivalent
traditionally used ones (Weininger, 1988, 1990; Weininger et al.,
1989). Under such circumstances, the term ‘quasi-SMILES’ is used
to define the name for the used representation of metal oxide
nanoparticles, because the quasi-SMILES is the representation of
data on molecular structure together with condition: presence or
absence of photo-inducing. The presence of photo-inducing in-
dicated by symbol ‘^ ’ that is added at the end of traditional SMILES
(Table 2).

Thus the optimal descriptors have been calculated as follows:

Σ=DCW T N CW A( , ) ( ) (1)k

where Ak is an attribute of the quasi-SMILES that comprises one
symbol (e.g. ‘O’, ‘V’, etc.) or two symbols which should be
examined as one (e.g. ‘Cu’, ‘Al’, etc.). In the case of dark cytotoxi-
city, nanoparticles are represented by SMILES of ACD/ChemSketch
software (ACD/I-LAB, 2014), in the case of photo-induced cyto-
toxicity, nanoparticles are represented by the SMILES of ACD/
ChemSketch software (ACD/I-LAB, 2014) plus symbol ‘^ ’ (Table 2).

The CW(x) is correlation weight for an attribute x, that is
extracted from a quasi-SMILES; the T is the threshold to divide
attributes into two categories rare (noise) or not rare; the N is the
number of epochs of the Monte Carlo optimization. Correlation
weights are calculated for not rare attributes by the Monte Carlo
optimization that gives maximum of determination coefficient
between DCW(T,N) and pLC50 for the calibration set. The prefer-
able values for the Tn and Nn which provides best statistics for the
calibration set should be defined at the preliminary phase of the
QSAR analysis (Toropova et al., 2011). Having Tn, Nn, and CW(x)
which give maximum of the determination coefficient for the
calibration set, one can define (using data from the training set)
the following model:

= + * * *C C DCW T NpLC50 ( , ) (2)0 1

The predictability of the model should be checked up with
external validation set.

Table 3 contains the numerical data on the correlationweights of
different attributes involved in the modeling process. These are
(i) various chemical elements represented traditionally by one (e.g.
‘O’, ‘V’) or by two symbols (e.g. ‘La’, ‘Ni’). The symbol ‘¼ ’ represents
double bonds. The symbol ‘^ ’ represents the photo-inducing. The
symbols ‘[‘ and ’]’ are used in the classic SMILES for encoding special
group or metal (Weininger, 1988, 1990; Weininger et al. 1989). Thus,
all attributes have transparent interpretation. The correlation

Table 1
Upper triangle of percentages of identity for random splits.

Set Split 1 Split 2 Split 3 Split 4 Split 5 Split 6

Split 1 Training 100.0a 72.3 72.7 65.1 57.8 69.8
Calibration 100.0 16.7 0.0 33.3 0.0 16.7
Validation 100.0 16.7 33.3 15.4 16.7 15.4

Split 2 Training 100.0 76.2 58.5 69.8 58.5
Calibration 100.0 42.9 0.0 30.8 28.6
Validation 100.0 16.7 30.8 33.3 30.8

Split 3 Training 100.0 53.7 65.1 68.3
Calibration 100.0 0.0 30.8 28.6
Validation 100.0 30.8 0.0 15.4

Split 4 Training 100.0 52.4 70.0
Calibration 100.0 15.4 0.0
Validation 100.0 30.8 42.9

Split 5 Training 100.0 61.9
Calibration 100.0 15.4
Validation 100.0 30.8

Split 6 Ttraining 100.0
Calibration 100.0
Validation 100.0

Where Ni j, is the number of substances distributed into the same set for both the i-th
split and the j-th splits (set¼training, calibration, and validation); Ni is the number of
substances distributed into the set for the i-th split; Nj is the number of substances
distributed into the set for the j-th split.

a = * + ×Identity N N N(%) /0.5 ( ) 100i j i j,
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