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a b s t r a c t

The well-known Laplace–Beltrami operator, established as a basic tool in shape processing, builds on a
long history of mathematical investigations that have induced several numerical models for computa-
tional purposes. However, the Laplace–Beltrami operator is only one special case of many possible
generalizations that have been researched theoretically. Thereby it is natural to supplement some of
those extensions with concrete computational frameworks. In this work we study a particularly
interesting class of extended Laplacians acting on sections of flat line bundles over compact Riemannian
manifolds. Numerical computations for these operators have recently been accomplished on two-
dimensional surfaces. Using the notions of line bundles and differential forms, we follow up on that work
giving a more general theoretical and computational account of the underlying ideas and their
relationships. Building on this we describe how the modified Laplacians and the corresponding
computations can be extended to three-dimensional Riemannian manifolds, yielding a method that is
able to deal robustly with volumetric objects of intricate shape and topology. We investigate and
visualize the two-dimensional zero sets of the first eigenfunctions of the modified Laplacians, yielding an
approach for constructing characteristic well-behaving, particularly robust homology generators invar-
iant under isometric deformation. The latter include nicely embedded Seifert surfaces and their non-
orientable counterparts for knot complements.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and related work

From a physics and engineering perspective the well-known
Laplacian acting on functions that are defined over some space M
is essential for modeling common phenomena such as heat
diffusion and wave propagation on M. In the corresponding
mathematical models it often arises from variational methods
applied to some energy minimization principle. Its properties
make it a versatile tool for obtaining well-behaved functions or
studying the underlying space.

The physical relevance and mathematical properties of the
Laplacian have motivated several generalizations in various direc-
tions, such as the extension from scalar functions to vector or
tensor fields. For example the vector Laplacian is relevant in the
study of electromagnetics whereas analogous differential opera-
tors are used in linear elasticity. Furthermore, by going from
Euclidean spaces to curved Riemannian spaces, the Laplace–
Beltrami operator acting on functions and the Hodge–de Rham
Laplacian acting on differential forms provide natural

generalizations of the Laplacian or vector Laplacian, respectively.
These and other more abstract generalizations are studied in a
branch of mathematics known as spectral geometry.

Although many fundamental theoretical questions are still
unsolved, the field of spectral geometry has established remark-
able results that show the Laplacians to capture various geometric
and topological information about the underlying space. However,
most of these results are not directly amenable to computational
methods and are rather given in terms of asymptotic relations or
curvature-dependent bounds on the eigenvalues, see e.g. [1].
There is a large gap between the abstract constructions in theory
and concrete computational methods applicable to given shapes.
In particular, the transition from two to three dimensions is more
challenging in practice than indicated by the general theory.

With the increasing availability of computing power, the
Laplace operator has attracted considerable interest in computa-
tional geometry and shape processing, driven by the desire to
exploit it for practical algorithms and based on a variety of
discretizations, see e.g. [2–6]. Among applications employing
numerically computed Laplacian invariants are shape and image
retrieval using spectral prefixes [7–9] based on early research
[10,11] and patented in [12] with a retrospective discussed in [13].
The Laplacian has also been successfully used in signal processing
operations [14], surface remeshing [15], parametrization [16–18],
mesh deformation [19], descriptors for shape matching [20–24],
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segmentation and registration [25] and statistical and topological
shape analysis [26–28], just to mention a few. A survey of some of
these and other applications can be found in [29].

The route taken in most of these applications is to start directly
with a discretization defined in terms of concrete equations that are
valid for a point cloud, graph, or mesh representation. Therefore, it
is common to discuss the Laplace–Beltrami operator in a specific
discretization, most notably as the so-called Cotangent–Laplacian
[3]. However, comparatively few computational attempts have gone
beyond modeling the classical Laplace–Beltrami operator by con-
sidering for example the spectrum of operators derived from
different energy functionals [30,31], the Hodge–de Rham Laplacian
[32] or quaternionic-valued operators [33].

The contribution of this paper fits into dealing with a class of
operators going beyond the usual Laplace–Beltrami operator. We
extend the work in [34,35], proposing a general method to explicitly
construct a flat line bundle over a compact three-dimensional
manifold M represented by a simplicial complex K and to perform
a spectral decomposition for the associated connection Laplacian.
Note that the general concept of connection Laplacians has recently
also been investigated in the context of so-called vector diffusion
maps for analyzing point-based data sets, see [36].

The case where M is equipped with non-Euclidean geometry
and the trivial connection has been an object of study within
physics, see for example [37,38] considering two-dimensional
hyperbolic surfaces. Specific constantly curved three-dimensional
settings have recently attracted attention, too, see e.g. [39]. Our
method applies in these settings as well as in the general
arbitrarily curved case.

As we will use knot complements to construct three-dimen-
sional bounded manifolds, some of our result relate to so-called
Seifert surfaces [40]. While these are topologically easily con-
structed, obtaining nice geometrical embeddings is challenging,
see [41]. This topic has also been researched in the context of
electromagnetic computations to deal with the multi-valuedness of
scalar potentials by introducing cuts, see the work of Kotiuga
[42,60]. As we will illustrate, our method yields well-behaved
embeddings of Seifert surfaces or their non-orientable counterparts.

2. Contribution

Combining ideas from spectral geometry and algebraic topol-
ogy, the aim of this paper is to investigate the so-called connection
Laplacians on flat line bundles from a computational point of view.
These operators generalize the well-known Laplace–Beltrami
operator which has become ubiquitous in shape processing. One
can interpret most of those Laplacians as perturbations of the
ordinary Laplacian dnd by a first-order differential expression,
namely

Δωf ¼ dn df þ 2〈df ;ω〉þ ðdnωþ jωj2Þf ð1Þ
where ω is an imaginary-valued closed differential one-form.
Employing the notion of a connection, Δω is often called the
Bochner or connection Laplacian associated to the flat connection
dω ¼ dþ ω. One way of understanding connection Laplacians is in
terms of introducing certain sign flips or phase shifts across
embedded hypersurfaces representing closed chains, i.e. so-called
cycles within relative homology. Focusing on two-dimensional
manifolds, an approach for obtaining the spectral decomposition
of such Laplacians has been recently introduced in [34,35].

We follow up and extend those approaches by describing a
general method that is able to deal with three-dimensional
volumetric objects of complex topology. While in two dimensions
it is comparatively easy to find a suitable 1-cycle resembling a
curve and to perform the flips/phase shifts across this curve, the

corresponding situation in three dimensions is more difficult.
Obtaining suitable generators in this case requires more sophisti-
cated algorithms which typically produce quite cluttered outputs.
These generators can exhibit complex self-intersections or even be
non-orientable, thereby obscuring how and where precisely to
apply the required sign flips or phase shifts consistently.

In this paper we investigate topologically complex three-
dimensional manifolds M by computing the spectral decomposi-
tions of the generalized Laplacians. Our approach applies to
compact manifolds that may be unbordered and even equipped
with a non-Euclidean geometry.

We describe how to overcome the above-mentioned difficulties
by constructing complex line bundles over simplicial complexes
representing M based on a formal approach. Following the classical
definition of a bundle we define an atlas and associated bundle
transition functions in terms of a discrete one-form on the dual
mesh or — in other words — in terms of a discrete flat connection
using the terminology from [43]. We show that the resulting atlas is
well-defined in case the one-form is closed. This is necessary to
ensure the correctness of the computations building upon this atlas.

As an application we compute smooth well-behaving embed-
dings of two-dimensional homology generators for any considered
homology class. Those are invariant under isometric transforma-
tions and robust to noise and discretization.

Outline: In Sections 3–5 we discuss essential mathematical
preliminaries in the smooth and discrete settings. Sections 6–8
describe the core of our approach. Section 9 summarizes the
algorithm used for obtaining the results discussed in Section 10.

3. Basics

An appropriate mathematical setting for our discussion is
provided by differential geometry, see e.g. [44], starting with a
given Riemannian manifold M, possibly with boundary. For shape
processing this manifold is typically, but not necessarily, embedded
in an Euclidean space and can be pictured as a curve, surface, or
volume. A differentiable manifold is usually defined in terms of an
atlas, being a collection of open sets Ui covering M, together with
chart homeomorphisms Ui-Rn that induce differentiable chart
transitions. The metric tensor, denoted by g or gij in local coordi-
nates, allows for measuring metric properties such as lengths,
angles and volumes on M. This tensor can be assumed to be given
a-priori or to be induced by the embedding.

Commonly, vector bundles are introduced to equip the mani-
fold with additional structure, see e.g. [44,45]. Intuitively, a rank k
vector bundle E over a manifold M is obtained by assigning to each
point p∈M a k-dimensional vector space Ep in a continuous way.
The vector space Ep is called fiber over p. Vector bundles of rank
one are called line bundles. The prototypical example of a vector
bundle is the tangent bundle TM which is the collection of all
tangent spaces of M. Its dual is the cotangent bundle TnM.
Applying k times the exterior product to TnM one obtains the
bundles ∧kTnM. A section of a bundle E is a differentiable map s :
M-E with the property sðpÞ∈Ep for all p. The space of sections of E
is denoted by ΓðEÞ. These constructions are quite natural and
familiar as for example ΓðTMÞ is the space of vector fields and
Γð∧kTnMÞ, usually denoted by ΩkðMÞ, is the space of differential k-
forms. The space of complex-valued functions or differential zero-
forms on M can also be considered as the space of sections of the
trivial line bundle M � C.

The most important operation on differential forms is the
exterior derivative d : Ωk-Ωkþ1. Forms in the kernel of d are
called closed, those in the image of d are called exact. Since d2¼0,
the exterior derivative gives rise to the de Rham cohomology
groups Hk

dRðMÞ as the quotient groups of closed forms modulo
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