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a b s t r a c t

Constrained isometric planar parameterizations are central to a broad spectrum of applications. In this
work, we present a non linear solver developed on OpenCL that is efficiently parallelizable on modern
massively parallel architectures. We establish how parameterization relates to mesh smoothing and
show how to efficiently and robustly solve the planar mesh parameterization problem with constraints.
Furthermore, we demonstrate the applicability of our approach to real-time cut-and-paste editing and
interactive mesh deformation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of mesh parameterization is to obtain a piecewise
linear map, associating each face of the mesh with a surface patch
on the parameterization zdomain. The parameterization domain is
the surface that the mesh is parameterized on. Since the geometric
shape of the parameterization surface will typically be different
than the shape of the original mesh, angle and area distortion is
introduced. Maps that minimize the angular distortion are called
conformal, maps that minimize area distortion are called authalic,
and maps that minimize distance distortion are called isometric.
In this work, we deal with constrained isometric planar parame-
terizations. These maps are central to a broad spectrum of
applications such as texture mapping, mesh completion, morphing
and deformation transfer.

An important goal of parameterization is to obtain bijective
(invertible) maps. The bijectivity of the map guarantees that there
is no triangle flipping or overlapping. This is an important
guarantee for certain applications, especially in the presence of

user defined constraints on the vertices. On a planar parameter-
ization domain a map may exhibit local or global bijectivity. Local
bijectivity is achieved when there are no local triangle flips in the
local neighborhoods of the mesh, whereas global bijectivity is
achieved when there is no global mesh overlapping. Generally,
global bijectivity is harder to achieve. Nevertheless, for most
applications local bijectivity is sufficient.

The existing planar parameterization methods can be classified
into two categories (for an extensive survey see [1]) : (i) methods
that solve only linear systems, for example [2–4] and (ii) methods
that use some kind of non-linear optimization. Typical methods of
the former category, especially the earlier ones, have no guarantee
for local or global bijectivity and usually offer inferior results as
compared to the latter. Nevertheless, they are usually very fast and
can be useful even as an initial solution for non-linear approaches.
For example, in [5] although the energy minimized is non linear, a
linear system is solved to obtain an initial parameterization of the
mesh on the plane.

Amongst the latter category, several methods use some form of
constrained or unconstrained non-linear optimization. These
methods either reformulate the problem (resulting in non linear-
ity) [6,7] or directly minimize a non linear energy term [5,8]. An
indicative example is the work of [6] where the parametrization
problem is reformulated in terms of angles subject to a set of
constraints that ensure planarity and triangle validity of the final
parameterization. Another example is the work of [7] where the
authors use a set of vertices of the mesh called cone singularities to
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absorb the Gaussian curvature so as to compute conformal para-
meterizations of meshes. This idea was further extended in [9]
where the authors first determine automatically the location and
the target curvatures of the singularities. They then proceed by
solving a discrete Poisson equation on the mesh vertices to
compute edge lengths and compute the final embedding using a
linear least squares methodology based on the computed edge
lengths. A related work is [10] based also on cone singularities
where a non linear solver is used to minimize the corresponding
metric and compute the final parameterization.

For practical applications there is usually an additional require-
ment to accommodate user defined or automatically imposed
constraints on the vertices of the parameterization. Generally,
these constraints can be categorized into two groups: soft con-
straints that are approximately satisfied in the least squares sense
and hard constraints that are precisely satisfied. Methods based on
energy minimization can support soft constraints by adding a
quadratic term to the energy function that measures the distance
between the vertices and the desired location. Nevertheless, for
linear approaches the additional term usually breaks the guaran-
tees for bijectivity even for parameterizations on convex domains [1].
Hard constraints are even more difficult to support. Some methods
can be extended to enforce hard constraints by the use of Lagrange
multipliers [3]. However, such methods do not guarantee parameter-
ization bijectivity.

In a nutshell, many previous approaches employ non linear
solvers for constrained or unconstrained non linear optimization
targeted to conformal parameterizations ([6,7,10,9]). Others use
fast linear solvers (e.g. [4]) to obtain isometric parameterizations
but fail to support constraints and local bijectivity. In this work, we
deal with the problem of computing an isometric bijective planar
parameterization of a mesh, subject to hard constraints. Addition-
ally, soft constraints can be trivially supported due to the formula-
tion of the problem. More specifically, this paper makes the
following technical contributions:

� Establishes the relation between mesh smoothing and para-
meterization techniques and derives a simplified formulation
for the isometric parameterization problem.

� Presents an efficient parallel implementation of a non-linear
solver along with a number of heuristics that speed up
substantially the parallel realization on modern hardware.

� Presents an iterative topological untangling process that solves
efficiently the constrained parameterization problem.

� Demonstrates the applicability of the parallel solver on realiz-
ing the feature cut-and-paste design paradigm.

The rest of the paper is organized as follows. Section 2 offers
theoretical background for mesh smoothing and establishes how it
is related to parameterization. Section 3 describes the core of our
constrained parallel solver for isometric parameterizations.
Section 4 presents an application of our solver on cut-and-paste
design. Finally, Section 5 offers conclusions.

2. Isometric parameterization

2.1. Mesh smoothing preliminaries

Before explaining the connection between the parameteriza-
tion and the smoothing problem, we define three element types:
(i) the physical element which is obtained through a mapping,
possibly with area and angle distortion, of an element of the
original mesh on the parameterization space, (ii) the reference
element which is constructed by placing one node at the origin
and the other nodes at unit lengths along the cartesian axes, and

(iii) the ideal element which depends on the desired properties of
the final mesh (see [11,12]).

Furthermore, we define two affine mappings. The first mapping
from the reference element xr to the ideal element xi is defined as

xi ¼Wxr ð1Þ
where matrix W is the edge matrix of the ideal element. The
second mapping from the reference element xr to the physical
element x is defined as

x¼Axr þ x0 ð2Þ
where matrix A is the edge (Jacobian) matrix of the physical
element and x0 is the vector with the coordinates of the first
vertex. The matrix A holds information about the volume, the area,
and the orientation of the physical element while x0 controls its
translation.

Based on the above definitions the shape matrix from the ideal
to the physical element was defined in [11] as

S¼ AW−1 ð3Þ
and the associated barrier shape quality metric ðηshapeÞ : Rn�n-R

as

ηshape ¼
‖S‖2F

n detðSÞ2=n
ð4Þ

where for surface and volume meshes n is 2 and 3, respectively.
The above metric can be used in an optimization process as an
objective function to minimize over the vertices to obtain an
optimal mesh. This quality metric assumes that each element has
positive and non-zero determinants and consequently non-zero
local area or volume. Furthermore, the barrier form is used to
enforce positive Jacobian determinants to prevent folding. The
mappings are depicted in Fig. 1.

2.2. Shape matrix construction for conformal parameterization

As noted in the previous section the definition of the ideal
element depends on the desired properties of the final mesh.

Therefore to preserve the angles of a triangle of the original
mesh, we define on the parameterization space an ideal triangle
Δv0v1v2 with the same angles. Moreover for reasons that will
become apparent, we define its similar triangle Δv′0v′1v′2 with
base ‖v′0v′1‖¼ 1 and v′0 ¼ v0 (see Fig. 1) where

‖v′0v′1‖
‖v0v1‖

¼ λ; λ40 ð5Þ

Fig. 1. Ideal triangle ▵v0v1v2 and its similar triangle ▵v′0v′1v′2 on R2 along with the
corresponding mappings.
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