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a b s t r a c t

Biodiversity nurturing may be a valuable pathway in controlling chemical stress on the ecosystem. In the
present work, in silico studies have been performed to develop regression based quantitative structure
toxicity relationship (QSTR) models using a data set containing 105 organic chemicals for the prediction
of 48-h chemical toxicity towards Pseudokirchneriella subcapitata. Classification based linear discriminant
analysis (LDA) was also performed to distinguish chemicals into toxic and nontoxic groups using the
same data set. The developed models were found to possess good predictive quality in terms of internal,
external and overall validation parameters. The regression based QSTR model suggests that second order
molecular connectivity index (molecular size and lipophilicity), density (aromaticity), relative shape of
molecules (cyclicity/aromaticity), and specific molecular fragments of the chemicals are important
properties of chemicals to exert their toxicity on P. subcapitata. The classification based LDA QSTR model
suggested that fused ring aromatic systems, secondary carbon atom fragments, second order valence
molecular connectivity indices (molecular size and branching) and molecular weight are the distinguish-
ing features to differentiate chemicals into toxic and nontoxic groups.

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

Environmental management has aims to protect different living
species from stresses arising from the chemicals released to the
ecosystems (Cardinale et al., 2012; Hartung, 2009). Every species
plays a momentous role in monitoring evolutionary diversification
(Cardinale et al., 2012). The dynamics of all ecosystems are decided
by intrinsic and extrinsic functions of individual species and their
intimate interaction with non-living objects in the ecosystem such
as bioaccumulation and excretion (Ahrens and Traas, 2007; Bell
et al., 2005; Brose et al., 2004; Emerson and Kolm, 2005; Gravel
et al., 2011). The number of species in an ecosystem and their traits
are harmonized predictors of many ecological processes, such as
rates of bioconservation, biomass sequestration, productivity,
sustainable management of natural resources and biogeochemical
cycle (Chapin et al., 2000; Hector and Bagchi, 2007; Kolter and
Greenberg, 2006). In this consequence, algae communities provide
valuable services to environmental management.

Over the last few decades, the environment has been much
exposed to chemical industrializations, mostly through the
increased use of agricultural fertilizers and pharmaceuticals, fossil

fuel combustion, biomedical waste and petrochemicals (Planson
et al., 2012; Rohr et al., 2008). Unrestricted release of chemicals
into the environment contributes to the leading causes of pollu-
tion worldwide (Scherb and Voigt, 2011). A number of biomedical
along with many ecological problems such as global warming,
melting of ice caps, loss of biodiversity, abnormality in biogeo-
chemical cycle are arising from the chemical revolution (Cardinale
et al., 2012; Gonzalez et al., 2011; Raes et al., 2011; Scherb and
Voigt, 2011). Therefore, the environment needs to be nurtured and
conserved for ecological functions which may require natural
biodiversity. Several studies suggest that conservation of biodiver-
sity may be a valuable pathway in controlling the chemical stress
or chemical toxicity of the ecosystem (Bell et al., 2005; Cardinale
et al., 2012; Chapin et al., 2000; Hector and Bagchi, 2007). Under-
standing the chemical toxicity to different species is becoming a
point of focus in environmental chemistry (Azarbad et al., 2013;
Daouk et al., 2013; Garrigues, 2005). The effects of chemicals on
individual species depend on the interaction of chemicals with
cellular microenvironment (Hartung et al., 2012). The toxicity
screening of a large number of chemicals and understanding their
complex cellular interaction towards toxicity require defined in-
vitro, in-vivo experiments which face some socioeconomic and
bioethical complications such as time, cost, number of animals for
experiment and difficulties in correlation/interpretation with
human system (Ahrens and Traas, 2007; Garrigues, 2005). To
assist the experimental work, reliable simulation/theoretical
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analysis should be performed to explain the chemical toxicity on
different species. The quantitative structure toxicity/activity/prop-
erty relationship (QSTR/QSAR/QSPR) methods can be applied to
address the structural relationship of chemicals with their toxic
potency and categorization of chemicals into toxic and nontoxic
groups (Du et al., 2008; Hartung, 2009; Lee et al., 2013; Shi and
Yang, 2013; Yuan et al., 2012). Therefore, the present study has
been focused to explore the chemical attributes of pesticides,
polycyclic aromatic hydrocarbons, nitriles, aldehydes along with
other pollutants for their toxic manifestation towards Pseudokirch-
neriella subcapitata (Chen et al., 2009).

2. Materials and methods

2.1. The dataset selection

A number of QSAR models on the chemical toxicity of P. subcapitata can be
found in the literature (Supplemental data Table S1). The toxicity values (EC50) vary
with the variation of experimental conditions. The EC50 value is the effective
concentration of a chemical/drug that inhibits growth/kill 50% of species. The
growth inhibition assay on P. subcapitata is usually performed for different time
durations (24 h, 48 h, 72 h and 96 h). A review of previous QSAR studies on P.
subcapitata toxicity (Supplemental data Table S1) shows that QSARs on 48-h
toxicity data were previously carried out on small number of chemicals (references
of the previous QSAR studies are listed in the Supplemental data at the end of Table
S1). This prompted us to develop further QSAR models for 48-h data using a larger
chemical set. QSAR models on 72-h data on toxicity susceptibility on P. subcapitata
have been recently reported using non-polar and polar narcotic chemicals by
Aruoja et al. (2014). However, it may be noted that QSAR models developed on data
for toxicity of different durations should not be directly compared; according to the
OECD guidelines for the QSAR model development (http://www.oecd.org/env/ehs/
risk-assessment/37849783.pdf), the endpoint of a QSAR model should be definite
one. In this perspective, the 48-h toxicity data of diverse chemicals (Chen et al.,
2009) was used in the present study for the development of QSTR models which
should be applicable on organic chemicals with structural diversity. The present
data set contains 108 chemicals comprising benzenes, alkanes, phenols, anilines,
aldehydes, nitriles, alcohols, ketones, pesticides, and polycyclic aromatic hydro-
carbons (PAHs). The toxicity data (EC50) was not reported for 2,4,6-trichlorophenol.
In a preliminary regression analysis, it was observed that formaldehyde and
acetaldehyde act as outliers (showing high residual values) in model development.
A number of studies reported that formaldehyde forms polymer (paraformalde-
hyde) and acetaldehyde forms a number of polymers such as paraldehyde,
metaldehyde and polyacetaldehyde (Furukawa and Saeguas, 1962; Ishida, 1981; Li
et al., 2011). These two aldehydes were not used in model development. Therefore,
three chemicals were excluded from this study and the remaining 105 chemicals
have been used in the modeling. The toxicity of the chemicals was reported in
terms of EC50 (mg/l) data against P. subcapitata. The EC50 values are the effective
concentration of a chemical that inhibits 50% growth of these algae. The EC50 (mg/l)
values were converted to negative logarithmic scale (pEC50 mM) for the model
development (Supplemental data Table S2).

2.2. Software

Structures of all chemicals were drawn using Marvin Sketch 5.10.0 software
(ChemAxon Ltd. http://www.chemaxon.com). The open source PaDEL-Descriptor
software (http://padel.nus.edu.sg/software/padeldescriptor/) was used to calculate
extended topochemical atom (ETA) indices while non-ETA descriptors were
calculated using Cerius2 version 4.10 software (Cerius 2 Version 4.10. http://
accelrys.com/products). The SPSS software (http://www.spss.com) was applied for
k-means clustering analysis for data set division (training and test sets) and ROC
analysis. Stepwise multiple linear regression regression (MLR) and partial least
squares (PLS) were performed by MINITAB version 14.13 (http://www.minitab.
com). The variable importance plot (VIP) and Y-randomization test for PLS
regression based QSTR was carried out using SIMCA-P software (UMETRICS
SIMCA-P 10.0, www.umetrics.com, Umea, Sweden). STATISTICA version 7.1 software
(http://www.statsoft.com/) was used to perform linear discriminant analysis (LDA).

2.3. Descriptor calculation

A set of ETA and non-ETA (2D and 3D) descriptors was used as a pool of
independent variables for model development. The non-ETA descriptors are topolo-
gical (Balaban, Kappa shape indices, flexibility index, subgraph count indices,
molecular connectivity indices, Wiener and Zagreb), thermodynamic (AlogP98 and
MolRef), structural (MW, Rotlbonds, Hbond acceptor, Hbond donor and Chiral
centers), spatial (RadOfGyration, Jurs descriptors, area, density, partial moment of

inertia and molar volume), electronic (HOMO, LUMO, superdelocalizability and
dipole moment), atom types (Atype), and electrotopological state indices
(Supplemental data Table S3). The set of descriptors has been chosen based on their
precise application, predictability and easy interpretability in terms of pEC50
determination. The conformer generation followed by energy minimization was
done prior to 3D descriptor calculation. The multiple conformations of each molecule
were generated using the optimal search as the conformational search method. Each
conformer was subjected to energy minimization procedure using smart minimizer
under open force field (OFF) to generate the lowest energy conformation for each
structure. The Gasteiger method was used for charge calculation of molecules
(Gasteiger and Marsili, 1980). Due to the importance of lipohilicity in aquatic toxicity
modeling, experimental partition co-efficient (log Kow) (taken from the literature;
Chen et al., 2009) was also tried as an additional descriptor.

2.4. Dataset splitting and model development

The data set (Ntotal¼105) was divided into training and test sets based on the
k-means clustering technique. Approximately 30% of chemicals were selected as
the test set members (Ntest¼31) and the remaining 70% as the training set
members (Ntraining¼74) (Dougherty et al., 2002; Everitt et al., 2001; Johnson and
Wichern, 2005). The splitting was done in such a way that each of the sets covers
the total chemical space of the entire data set (Martin et al., 2012). The same
division was used for both regression based QSTR and LDA studies. The models
were generated using the structural information of chemicals from the training set,
and the test set chemicals were employed to check model reliability or external
predictive quality of models. The regression based QSTR models were developed
using the partial least squares (PLS) method. The descriptors appeared in stepwise
MLR with stepping criteria F-to-enter 4 and F-to-remove 3.9 (Darlington, 1990)
were subjected to partial least squares (PLS) regression (Eriksson et al., 2001, 2002;
Wold, 1995). PLS is a more robust regression method than MLR and it obviates the
problem of intercorrelation in the latter approach. The linear discriminant analysis
(LDA) has also been applied to identify the discriminatory features into higher
and lower toxic chemicals (Fisher, 1936; Mitteroecker and Bookstein, 2011).
The threshold value (pEC50¼0.936 mM) for LDA analysis was selected based on
arithmetic mean of pEC50 values (Kar et al., 2012). Chemicals having the pEC50

value higher than or equal to 0.936 mM were considered as highly toxic to P.
subcapitata. In the LDA studies, 60 descriptors out of 171 descriptors were selected
as the pool of predictor variables based on molecular spectrum analysis.

2.5. Validation metrics for the regression based QSTR model

The robustness of the QSTR models was verified by using a number of statistical
parameters. Three strategies were followed: (1) leave-one-out (LOO) internal
validation or cross-validation for the training set compounds, (2) external valida-
tion using the test compounds and (3) overall validation using both training and
test set compounds. The main objective of this QSTR modeling is the development
of robust models which are able to make accurate and reliable predictions of
toxicity of chemicals towards P. subcapitata. Therefore, mathematical equations
developed from the training set were subsequently validated internally using
training set chemicals as well as externally using the test set molecules for checking
the predictive quality of the developed models. The overall validation strategies
countercheck the reliability of the developed models for their possible application
on a new set of data and assess confidence of such predictions.

The model fitness parameters R2and R2
a , internal validation metrics Q2,

r2mðLOOÞscaled and Δr2mðLOOÞscaled , external validation metrics R2
pred , r2mðtestÞscaled ,

Δr2mðtestÞscaled and overall metrics r2mðoverallÞscaled , Δr2mðoverallÞscaled were reported in
connection with validation for the developed models (Kubinyi et al., 1998; Roy
et al., 2012, 2013) (the definitions of all fitness parameters have been provided in
Supplemental data). Further, predictive qualities of the models were assessed based
on Golbraikh and Tropsha0s approaches (Golbraikh and Tropsha, 2002). According
to the acceptance criteria set forth by Golbraikh and Tropsha, a model must follow
the following conditions:

ðiÞ Q240:5

ðiiÞ r240:6

ðiiiÞ ðr2�r2oÞ=r2o0:1 or ðr2�r02o Þ=r2o0:1

ðivÞ 0:85rkr1:15 or 0:85rk0r1:15

Here, r2 and ro
2 are squared correlation coefficient values between the observed

and predicted values (Y and X axes respectively) of the compounds with and
without intercept respectively. An interchange of the axes gives the value ro

02

instead of ro
2. The plot of observed values (Y-axis) against the predicted values

(X-axis) of the test set compounds setting the intercept to zero gives the slope
of the fitted line as the value of k. The interchange of axes gives the value of k0 .

The developed models were also subjected to a randomization test (100
permutations) to check the possibility of chance correlationn. The pEC50 (Y) values
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