
PlantGL: A Python-based geometric library for 3D plant modelling
at different scales

C. Pradal a,1, F. Boudon a,*,1, C. Nouguier a, J. Chopard b, C. Godin b

a CIRAD, Virtual Plants INRIA Project-Team, UMR DAP, TA A-96/02, Avenue Agropolis, F-34398 Montpellier, France
b INRIA, Virtual Plants INRIA Project-Team, UMR DAP, F-34398 Montpellier, France

a r t i c l e i n f o

Article history:
Received 13 August 2007
Received in revised form 6 October 2008
Accepted 9 October 2008
Available online 26 October 2008

Keywords:
Graphic library
Virtual plants
Crown envelopes
Plant architecture
Canopy reconstruction
Plant scene-graphs

a b s t r a c t

In this paper, we present PlantGL, an open-source graphic toolkit for the creation, simu-
lation and analysis of 3D virtual plants. This C++ geometric library is embedded in the
Python language which makes it a powerful user-interactive platform for plant modeling
in various biological application domains.

PlantGL makes it possible to build and manipulate geometric models of plants or plant
parts, ranging from tissues and organs to plant populations. Based on a scene graph aug-
mented with primitives dedicated to plant representation, several methods are provided
to create plant architectures from either field measurements or procedural algorithms.
Because they are particularly useful in plant design and analysis, special attention has been
paid to the definition and use of branching system envelopes. Several examples from dif-
ferent modelling applications illustrate how PlantGL can be used to construct, analyse
or manipulate geometric models at different scales ranging from tissues to plant
communities.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The representation of plant forms in computer scenes
has long been recognized as a difficult problem in com-
puter graphics applications. In the last two decades, sev-
eral algorithms and software platforms have been
proposed to solve this problem with a continuously
improving level of efficiency, e.g. [1–9]. Due to the increas-
ing use of computer models in biological research, the de-
sign of 3D geometric models of plants has also become an
important aspect of various biological applications in plant
science, e.g. [10–16]. These applications raise specific prob-
lems that derive from the need to represent plants with a
botanical or geometric accuracy at different scales, from
tissues to plant communities. However, in comparison
with computer graphics applications, less effort has
been devoted to the development of geometric modelling

systems adapted to the requirements of biological
applications.

In this context, the most successful and widespread
plant modelling system has been developed by P. Prus-
inkiewicz and his team since the late 80’s at the interface
between biology and computer graphics. They designed a
computer platform, known as L-Studio/VLab, for the
simulation of plant growth based on L-systems [17,1,3].
This system makes it possible to model the development
of plants with efficiency and flexibility as a process of
bracketed-string rewriting. In a recent version of LStu-

dio/VLab, Karwowski and Prusinkiewicz 18 changed the
original cpfg language for a compiled language, L+C, built
on the top of the C++ programming language. The resulting
gain of expressiveness facilitates the specification of com-
plex plant models in L+C [19]. An alternative implementa-
tion of a L-system-based software for plant modeling was
designed by W. Kurth [20] in the context of forestry appli-
cations. This simulation system, called GroGra, was also
recently re-engineered in order to model the development
of objects more complex than bracketed strings. The

1524-0703/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.gmod.2008.10.001

* Corresponding author.
E-mail address: frederic.boudon@cirad.fr (F. Boudon).

1 These authors contributed equally to this work.

Graphical Models 71 (2009) 1–21

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier .com/locate /gmod

mailto:frederic.boudon@cirad.fr
http://www.sciencedirect.com/science/journal/15240703
http://www.elsevier.com/locate/gmod


resulting simulation system, GroIMP, is an open-source
software that extends the chain rewriting principle of
L-Systems to general graph rewriting with relational graph
growth (RGG), [21,22]. Similarly to L+C, this system has
been defined on top of a widely used programming lan-
guage (here Java). Non-language oriented platforms were
also developed. One of the first ones was designed by the
AMAP group. The AMAP software [2,23] makes it possible
to build plants by tuning the parameters of a predefined,
hard-coded, model. Geometric symbols for flowers, leaves,
fruits, etc., are defined in a symbol library and can be mod-
ified or created with specific editors developed by AMAP.
In this framework, a wide set of parameter-files has been
designed corresponding to various plant species. In the
context of applications more oriented toward computer
graphics, the XFrog software [5,24] is a popular example
of a plant simulation system dedicated to the intuitive de-
sign of plant geometric models. In XFrog, components
representing basic plant organs like leaves, spines, flower-
lets or branches can be multiplied in space using high-level
multiplier components. Plants are thus defined as graphs
representing series of multiplication operations. The
XFrog system provides an easy to use, intuitive system
to design plant models, with little biological expertise
needed.

Therefore, if accuracy, conciseness and transparency of
the modeling process is required, object-oriented, rule-
based platforms, such as L-studio/VLab or GroIMP, are
good candidates for modelers. If interactive and intuitive
model design is required, with little biological expertise,
then component-based systems, like XFrog, or sketch-
based systems are the best candidates. However, if easi-
ness to explore and mathematically analyse plant scenes
is required, none of the above approaches is completely
satisfactory. Such an operation requires high-level user
interaction with plant scenes and dedicated high-level
mathematical primitives. With this aim, our team devel-
oped the AMAPmod software [25] several years ago, and
its most recent version, VPlants, which enables modelers
to create, explore and analyse plant architecture databases
using a powerful script language. In a way complementary
to L-Studio/VLab, VPlants allows the user to efficiently
analyse plant architecture databases and scenes from
many exploratory perspectives in a language-based, inter-
active, manner [26–29]. The PlantGL library was devel-
oped to support geometric processing of plant scenes in
VPlants, for applications ranging from computer graphics
[30,31] to different areas of biological modeling [32–
34,15,35,36]. A number of high-level requirements were
imposed by this context. Similarly to AMAPmod/VPlants,
the library should be open-source, it should be fully com-
patible with the data structure used in AMAPmod/VPlants

to represent plants, i.e. multi-scale tree graphs (MTGs), it
should be accessible through an efficient script language
to favor interactive exploration of plant databases, it
should be easy to use for biologists or modellers and
should not impose a particular modelling approach, it
should be easily extended by users to progressively adapt
to the great variety of plant modelling applications, and fi-
nally, it should be interoperable with other main plant
modelling platforms.

These main requirements lead us to integrate a number
of new and original features in PlantGL that makes it par-
ticularly adapted to plant modelling. It is based on the
script language Python, which enables the user to manip-
ulate geometric models interactively and incrementally,
without compiling the scene code or recomputing the en-
tire scene after each scene modification. The embedding
in Python is critical for a number of additional reasons:
(i) the modeller has access to a powerful object-oriented
language for the design of geometric scenes, (ii) the lan-
guage is independent of any underlying modelling para-
digm and allows the definition of new procedural
models, (iii) high-level manipulations of plant scenes en-
able users to concentrate on application issues rather than
on technical details, and (iv) the large set of available Py-
thon scientific packages can be freely and easily accessed
by modelers in their applications. From a contents perspec-
tive, PlantGL provides a set of geometric primitives for
plant modelling that can be combined in scene-graphs
dedicated to multiscale plant representation. New primi-
tives were developed to address biological questions at
either macroscopic or microscopic scales. At plant scale,
envelope-based primitives have been designed to model
plant crowns as volumetric objects. At cell scale, tissue ob-
jects representing arrangements of plant cells enable users
to model the development of plant tissues such as meris-
tems. Particular attention has been paid to the design of
the library to achieve a high-level of reuse and extensibility
(e.g. data structures, algorithms and GUIs are clearly sepa-
rated). To favor the exchange of models and databases be-
tween users, PlantGL can communicate with the other
modelling platforms such as LStudio/VLab and is avail-
able under an open-source license.

In this paper, we present the PlantGL geometric li-
brary and its application to plant modelling. Section 2 de-
scribes the design principles and rationales that underly
the library architecture. It also briefly introduces the main
scene graph structure and the different library objects:
geometric models, transformations, algorithms and visu-
alization components. Then, a detailed description of the
geometric models and methods dedicated to the con-
struction of plant scenes is provided in Section 3. This in-
cludes the modeling of organs, crowns, foliage, branching
systems and plant tissues. A final section illustrates how
PlantGL components can be used and assembled to an-
swer particular questions from computer graphics or bio-
logical applications at different levels of a modelling
approach: creating, analysing, simulating and assessing
plant models.

2. PlantGL design and implementation

A number of high-level goals have guided the design
and development of PlantGL to optimize its reusability
and diffusion:

� Usefulness: PlantGL is primarily dedicated to research-
ers in the plant modelling community who do not nec-
essarily have any a priori knowledge in computer
graphics. Its interface with modellers and end-users
should be intuitive with a short learning curve.

2 C. Pradal et al. / Graphical Models 71 (2009) 1–21



Download English Version:

https://daneshyari.com/en/article/442035

Download Persian Version:

https://daneshyari.com/article/442035

Daneshyari.com

https://daneshyari.com/en/article/442035
https://daneshyari.com/article/442035
https://daneshyari.com

