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a b s t r a c t

Maximally stable component detection is a very popular method for feature analysis in images, mainly

due to its low computation cost and high repeatability. With the recent advance of feature-based

methods in geometric shape analysis, there is significant interest in finding analogous approaches in

the 3D world. In this paper, we formulate a diffusion-geometric framework for stable component

detection in non-rigid 3D shapes, which can be used for geometric feature detection and description.

A quantitative evaluation of our method on the SHREC’10 feature detection benchmark shows its

potential as a source of high-quality features.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, feature-based methods have become a
ubiquitous tool in image analysis and a de facto standard in many
computer vision and pattern recognition problems. More recently,
there has been an increased interest in developing similar
methods for the analysis of 3D shapes. Feature descriptors play
an important role in many shape analysis applications, such as
finding shape correspondence [32] or assembling fractured models
[11] in computational aracheology. Bags of features [29,24,33] and
similar approaches [21] were introduced as a way to construct
global shape descriptors that can be efficiently used for large-scale
shape retrieval.

Many shape feature detectors and descriptors draw inspiration
from and follow analogous methods in image analysis. For
example, detection of geometric structures analogous to corners
[28] and edges [14] in images has been studied. The histogram of
intrinsic gradients used in [36] is similar in principle to the scale
invariant feature transform (SIFT) [16] which has recently become
extremely popular in image analysis. In [10], the integral invar-
iant signatures [17] successfully employed in 2D shape analysis
were extended to 3D shapes.

Examples of 3D-specific descriptors include the popular spin
image [12], based on representation of the shape normal field in a
local system of coordinates. Recent studies introduced versatile
and computationally efficient descriptors based on the heat
kernel [31,3] describing the local heat propagation properties on
a shape. The advantage of these methods is the fact that heat
diffusion geometry is intrinsic and thus deformation-invariant,
which makes descriptors based on it applicable in deformable
shape analysis.

1.1. Related work

A different class of feature detection methods tries to find
stable components or regions in the analyzed image or shape. In
the image processing literature, the watershed transform is the
precursor of many algorithms for stable component detection
[6,34]. In the computer vision and image analysis community,
stable component detection is used in the maximally stable
extremal regions (MSER) algorithm [18]. MSER represents inten-
sity level sets as a component tree and attempts finding level sets
with the smallest area variation across intensity; the use of area
ratio as the stability criterion makes this approach affine-invar-
iant, which is an important property in image analysis, as it
approximates viewpoint transformations. Alternative stability
criteria based on geometric scale-space analysis have been
recently proposed in [13].
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In the shape analysis community, shape decomposition into
characteristic primitive elements was explored in [22]. Methods
similar to MSER have been explored in the works on topological
persistence [8]. Persistence-based clustering [4] was used by
Skraba et al. [30] to perform shape segmentation. In [7], Digne
et al. extended the notion of vertex-weighted component trees to
meshes and proposed to detect MSER regions using the mean
curvature. The approach was tested only in a qualitative way, and
not evaluated as a feature detector.

1.2. Main contribution

The main contribution of our framework is three-fold. First, in
Section 2 we introduce a generic framework for stable component
detection, which unites vertex- and edge-weighted graph repre-
sentations (as opposed to vertex weighting used in image and
shape maximally stable component detectors [18,7]). Our results
(see Section 4) show that the edge-weighted formulation is more
versatile and outperforms its vertex-weighted counterpart in
terms of feature repeatability. Second, in Section 3 we introduce
diffusion geometric weighting functions suitable for both vertex-
and edge-weighted component trees. We show that such func-
tions are invariant under a large class of transformations, in
particular, non-rigid inelastic deformations, making them espe-
cially attractive in non-rigid shape analysis. We also show several
ways of constructing scale-invariant weighting functions. Third,
in Section 4 we show a comprehensive evaluation of different
settings of our method on a standard feature detection bench-
mark comprising shapes undergoing a variety of transformations
(also see Figs. 1 and 2).

2. Diffusion geometry

Diffusion geometry is an umbrella term referring to geometric
analysis of diffusion or random walk processes [5]. We models a
shape as a compact 2D Riemannian manifold X. In its simplest
setting, a diffusion process on X is described by the partial
differential equation
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called the heat equation, where D denotes the positive-semidefi-
nite Laplace–Beltrami operator associated with the Riemannian
metric of X. The heat equation describes the propagation of heat
on the surface and its solution f(t,x) is the heat distribution at a
point x in time t. The initial condition of the equation is some
initial heat distribution f(0,x); if X has a boundary, appropriate
boundary conditions must be added.

The solution of (1) corresponding to a point initial condition
f ð0,xÞ ¼ dðx,yÞ is called the heat kernel and represents the amount
of heat transferred from x to y in time t due to the diffusion
process. The value of the heat kernel ht(x,y) can also be inter-
preted as the transition probability density of a random walk of
length t from the point x to the point y.

Using spectral decomposition, the heat kernel can be repre-
sented as

htðx,yÞ ¼
X
iZ0

e�litfiðxÞfiðyÞ: ð2Þ

Here, fi and li denote, respectively, the eigenfunctions and eigen-
values of the Laplace–Beltrami operator satisfying Dfi ¼ lifi

(without loss of generality, we assume li to be sorted in increas-
ing order starting with l0 ¼ 0). Since the Laplace–Beltrami opera-
tor is an intrinsic geometric quantity, i.e., it can be expressed solely
in terms of the metric of X, its eigenfunctions and eigenvalues as

well as the heat kernel are invariant under isometric transforma-
tions (bending) of the shape. These properties of the Laplacian have
been previously exploited in the literature for ‘‘natural’’ parametri-
zaton of surfaces [15], construction of global shape descriptors [27],
and detection of symmetries [25] just to mention a few.

The parameter t can be given the meaning of scale, and the
family {ht}t of heat kernels can be thought of as a scale-space of
functions on X. By integrating over all scales, a scale-invariant

version of (2) is obtained:

cðx,yÞ ¼
X
iZ1

1

li
fiðxÞfiðyÞ: ð3Þ

This kernel is referred to as the commute-time kernel and can be
interpreted as the transition probability density of a random walk
of any length.

By setting y¼x, both the heat and the commute time kernels,
ht(x,x) and c(x,x) express the probability density of remaining at a
point x, respectively after time t and after any time. The value
ht(x,x), sometimes referred to as the auto-diffusivity function, is
related to the Gaussian curvature K(x) through

htðx,xÞ �
1
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This relation coincides with the well-known fact that heat tends
to diffuse slower at points with positive curvature, and faster at
points with negative curvature.

For any t40, the values of ht(x,y) at every x and yABeðxÞ in a
small neighborhood around x contain full information about the
intrinsic geometry of the shape. Furthermore, Sun et al. [31] show
that under mild technical conditions, the set fhtðx,xÞgt40 is also
fully informative (note that the auto-diffusivity function has to be
evaluated at all values of t in order to contain full information
about the shape metric).

2.1. Numerical computation

In the discrete setting, we assume that the shape is sampled at
a finite number of points V¼{v1,y,vN}, upon which a simplicial
complex (triangular mesh) with vertices V, edges E� V � V and
faces F � V � V � V is constructed. The computation of the dis-
crete heat kernel ht(v1, v2) and the associated diffusion geometry
constructs is performed using formula (2), in which a finite
number of eigenvalues and eigenfunctions of the discrete
Laplace–Beltrami operator are taken. The latter can be computed
directly using the finite elements method (FEM) [27], by discre-
tization of the Laplace operator on the mesh followed by its
eigendecomposition. Here, we adopt the second approach accord-
ing to which the discrete Laplace–Beltrami operator is expressed
in the following generic form:

ðDXf Þi ¼
1

ai

X
j

wijðfi�fjÞ, ð5Þ

where fi ¼ f(vi) is a scalar function defined on V, wij are weights,
and ai are normalization coefficients. In matrix notation, (5) can
be written as DXf ¼ A�1Wf , where f is an N � 1 vector, A ¼ diag(ai)
and W ¼ diagð

P
la iwilÞ�ðwijÞ. The discrete eigenfunctions and

eigenvalues are found by solving the generalized eigendecomposi-

tion [15] WF¼ AFL, where L¼ diagðllÞ is a diagonal matrix of
eigenvalues and F¼ ðflðviÞÞ is the matrix of the corresponding
eigenvectors.

Different choices of A and W have been studied, depending on
which continuous properties of the Laplace–Beltrami operator
one wishes to preserve [9,35]. For triangular meshes, a popular
choice adopted in this paper is the cotangent weight scheme
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