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a b s t r a c t

Reconstruction of 3D objects from 2D cross-sections is an intriguing problem with many potential

applications. We approach this problem through a novel multi-resolution method based on iterative

refinement of the sets representing the cross-sections. To that end, we introduce a new geometric

weighted average of two sets, defined for positive weights (corresponding to interpolation) and when

one weight is negative (corresponding to extrapolation). This new average can be used to interpolate

between cross-sections of a 3D object in a piecewise way. To obtain a smoother reconstruction of the

3D object, we adapt to sets the 4-point interpolatory subdivision scheme using the new average with

both positive and negative weights. The effectiveness of the new method is demonstrated by several

examples.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Methods for reconstruction of objects from cross-sections have
many applications. An important area of application is medical
imaging [3,6,18], where 3D images are reconstructed from 2D
slices obtained by medical imaging devices such as computational
tomography (CT). Among other areas of application are computer
graphics and animation, where sequences of intermediate shapes
are created between two or more 2D or 3D shapes [21].

The problem of reconstruction from parallel cross-sections has
been studied extensively for the past four decades and there
exists a significant body of literature on this topic. Some methods,
known as parametric, attempt to solve this problem by finding
correspondence between points on the boundaries of the given
cross-sections. Intermediate cross-sections are then created by
interpolating positions of the sequences of corresponding points
[4,5,23].

Another approach is to represent the cross-sections by implicit

functions and then to interpolate between the implicit functions. A
particularly popular method, originally proposed in [15], latter
modified in [12,18] and extended in [7,8,16], is based on the
representation of a cross-section by its signed-distance function. In
this method the cross-sections are treated as sets, or equivalently
as binary images. First, for each cross-section its signed distance
function is computed. Next the signed-distance functions are
pointwise interpolated by some univariate interpolation method,

usually by linear or cubic spline interpolation. Finally the result-
ing function is thresholded at zero level, to obtain the recon-
structed object.

Few works attempt to solve the problem by subdivision of sets.
The main theme of this approach is the adaptation to sets of real
valued subdivision methods (see e.g. [10]), by first expressing
weighted averages between several numbers by sequences of
weighted averages between two numbers (binary weighted

averages). Binary weighted averages of numbers are then replaced
by binary weighted averages of sets. In [9], spline subdivision
schemes are adapted to sets using the metric average of sets. In
[25], the Chaikin subdivision scheme is adapted to sets, based on
the straight-skeleton average as a binary weighted average.

This work is a combination of the last two approaches. We
develop a new weighted average of two sets based on the signed-
distance function. The new binary weighted average is defined for
positive weights and also when one weight is negative, therefore
it performs both interpolation and extrapolation. Then we adapt
to sets the 4-point interpolatory subdivision scheme [11], using
the new binary average. Our numerical simulations demonstrate
the quality of the reconstruction.

Although in this work we focus on the reconstruction of 3D
objects from 2D cross-sections, our ideas are immediately applic-
able in any finite dimension. In particular, our method can be
used to interpolate between a sequence of 3D objects.

The structure of this work is as follows. In Section 2 we
introduce the new binary weighted average of sets, and inter-
polate piecewise between each two consecutive cross-sections. In
Section 3, we adapt to sets the 4-point subdivision scheme and
use it for the reconstruction of objects from cross-sections.
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Section 4 presents applications of our method to various data
sets. The complexity of the method is discussed in Section 5.
In Section 6, we draw conclusions and propose directions for
future research.

2. The new binary average of sets

2.1. The average of ‘‘simply different’’ sets

2D sets representing cross-sections of a 3D object can be of
complicated topology, see Fig. 1. We approach the construction of
the new average of such sets by reducing it to several simple
problems. First we consider the new average in the simple case of
two sets A,B� R2, such that one set is contained in the other,
B� A, and the difference set,

A\B¼ fpAA : p=2Bg,

has only one connected component. We call two such sets simply

different. For two simply different sets A, B, one can think of the
difference set A\B as a ‘‘vector’’ connecting the two sets. Therefore,
when constructing a weighted average of two simply different
sets, it is natural to try to mimic the very familiar case of a
weighted average of two points in R2. Given two points p,qAR2 it
is easy to observe the following properties of the weighted
average tpþð1�tÞq, tAR:

1. The weighted average passes through q and p at t¼0 and 1,
respectively.

2. All averages are points on the same line. One way to express
this idea is

dEðp1,p3Þ ¼ dEðp1,p2ÞþdEðp2,p3Þ,

where pi ¼ tipþð1�tiÞq, i¼ 1,2,3, t1ot2ot3 and dE is the
Euclidean distance.

3. The average moves along the line with a constant velocity
vector (p�q).

We also observe that for tA ½0,1� the average interpolates between
the given points. For to0, the average extrapolates from p

beyond q, and for t41 the average extrapolates from q beyond
p. We aim to construct an average of two simply different sets
satisfying the above three properties and extending the idea of
interpolation and extrapolation.

Our construction is based on the symmetric difference metric,
which is a widely used metric to measure dissimilarity between
sets [20,22]. The symmetric difference of two sets A and B is

ADB¼ ðA\BÞ [ ðB\AÞ,

and the symmetric difference metric1 of A,B�R2 is defined by

dLðA,BÞ ¼ AreaðADBÞ:

First we introduce what we call the distance average of two
simply different sets which we later modify to get our new
average with the desirable properties. The distance average is
based on the method of interpolation of the signed-distance

functions introduced in [15]. The signed distance from a point p

to a set A is defined by

dSðp,AÞ ¼
dEðp,BoundaryðAÞÞ, pAA,

�dEðp,BoundaryðAÞÞ, p=2A,

(

with dE the Euclidean distance from a point to a set. We use the
signed-distance function, since in the literature it is a basic model

for implicit representation of sets. We define the distance average
between two simply different sets as the set,

tA ~"ð1�tÞB¼ fp : fA,B,tðpÞZ0g, ð1Þ

where fA,B,tðpÞ ¼ tdSðp,AÞþð1�tÞdSðp,BÞ. Note that fA,B,t is not the
signed-distance function of tA ~"ð1�tÞB.

It is easy to see that the distance average passes though the
original sets at t¼0 and 1. We observe another important
property of the distance average, which is

C1 \ C3DC2DC1 [ C3, ð2Þ

with Ci ¼ tiA ~"ð1�tiÞB, i¼1, 2, 3 and t1rt2rt3. Relation (2) can
be validated as follows. Let pAC1 \ C3, it follows from (1), that
fA,B,t1
ðpÞZ0 and fA,B,t3

ðpÞZ0. Consequently, since fA,B,t (p) is linear
as a function of t, for any t2A ½t1,t3�, fA,B,t2

ðpÞZ0. So pAC2 and thus
C1 \ C3DC2. From similar considerations for the complement set
of C1 [ C3, we get C2DC1 [ C3.

We observe also that all averages are ‘‘points’’ on an abstract
‘‘line’’ of sets due to the distance relation,

dLðC1,C3Þ ¼ dLðC1,C2ÞþdLðC2,C3Þ, ð3Þ

which follows from (2) and Theorem 2 in [19]. However the
distance average of sets lacks the constant velocity property, as
can be observed from the following example. Consider the sets A

and B shown in Fig. 2 as clipped together. Note that the difference
set A\B has only one connected component (the inner oval),
therefore A, B are simply different. Let p be a point in the interior
of A\B. For such a point:

dSðp,AÞ40, dSðp,BÞo0 and jdSðp,AÞj4 jdSðp,BÞj:

Therefore for any pAA,

1
2 dSðp,AÞþ1

2dSðp,BÞ40,

and consequently 1
2 A ~"1

2B¼ A (see Fig. 2). Indeed, it is undesirable
to get one of the original sets, as an equally weighted average of
the two different sets, since such average does not reflect a
continuous transition of shape between the two sets.

To overcome this difficulty we construct a new weighted
average of two simply different sets as a reparametrization of
the distance average, imposing the constant velocity property. For
this purpose we define the function,

gA,BðxÞ ¼ signðxÞ
dLðxA ~"ð1�xÞB,BÞ

dLðA,BÞ
: ð4Þ

It follows from (4) and (3), that the function gA,B is non-decreasing
and gA,B(0)¼0, gA,B(1)¼1. The function gA,B reveals us how the
average xA ~"ð1�xÞB is located relative to the set B (which
corresponds to x¼0). Next we define,

g�1
A,BðtÞ ¼ argmin

x
fjgA,BðxÞ�tjg: ð5Þ

Observe that if t belongs to the range of gA,B, then

gA,Bðg
�1
A,BðtÞÞ ¼ t: ð6Þ

Fig. 1. A cross-section of CT scan of human pelvis.

1 Technically, the ‘‘symmetric difference metric’’ is a metric on sets that are

equal to the closure of their interior [20].
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