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Medley of spirals from cyclic cellular automata
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a b s t r a c t

Cyclic cellular automata on the integer planar lattice are known to typically evolve through distinct

phases ending with minimal periodic terminal states that usually appear as intertwined spirals. Here we

explore the diversity of spirals that arise from nonstandard neighborhoods on the integer lattice and

from looking at the automata on quasi-crystalline arrangements of cells. We see that phase transitions

and development of spirals are almost ubiquitous yet the particular form of the spirals is very

dependent upon the particulars of the underlying neighborhoods; in fact the spiral forms echo the

neighborhoods. The quasi-crystalline illustrations provide much more subtle echoes in the spiral forms

that show artifacts from the non-periodic local symmetry that occurs.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A cellular automaton is a collection of cells that in each time
step are in a ‘‘state’’; usually the set of allowed states for each cell
is finite. The cells are affected by a specific local neighborhood and
a local rule such that the cells evolve from one time step to the
next according to the rule. Cellular automata are interesting
because of their simplicity and complex behavior [1–3]. The most
famous automaton is Conway’s Game of Life which was
popularized by Martin Gardner’s Scientific American Columns
[4,5]. That automaton runs on the integer lattice with nearest
eight neighbors and two possible states that are updated
according to a simple rule. It is intriguing because periodic
structures occur, as do moving configurations and generators. In
fact, it is known to be capable of universal computation [6].

Cyclic cellular automata were introduced by Griffeath and co-
workers[7] and described by Dewdney [8] in Scientific American
in 1989, where they were called cyclic-state automata. We will
refer to them as cyclic cellular automata (CCA). When CCA are
applied to a random initial configuration, they typically evolve
through distinct phases that have different appearances. The end
result is visually dramatic, periodic spirals that self-organize.
Spiral formation arises in physical situations [2,3,9,10] and in
other models [1–3,7,10–13]. While not every question about these
automata can be answered, it is possible to see why organized
structures should develop, as explained in [7,8,10], and will be
described below. Being able to explain this rich behavior is an
unusual and wonderful feature of these automata. Generalizations
of CCA to wider neighborhoods and thresholds has been studied
as well [7,10,12].

A cyclic cellular automaton is defined as an automaton where
each cell takes one of N states 0,1, 2,y, N�1 and a cell in state i

changes to state i+1 mod N at the next time step if it has a
neighbor that is in state i+1 mod N, otherwise it remains in state i

at the next time step. The most classic CCA are applied on the 2-
dimensional integer lattice with von Neuman neighborhoods
(nearest four NWES neighbors). However, this rule can be applied
to any configuration of cells and any definition of neighborhood in
any dimension. In fact, it can be applied to any graph.

In this investigation we explore CCA on a rich variety of planar
graphs. These include several types of nearest-neighbor neighbor-
hoods on the integer lattice and quasi-crystalline graphs. There
are many kinds of neighborhoods that can be formed even in this
case where only nearest neighbors are considered and the
resulting spirals include classical diamonds, squares, and variants
that echo the neighborhood in an inverted sense. The quasi-
crystalline arrangements of cells lead to many-sided spirals that
are echoes of more subtle local symmetry appearing in those
configurations.

2. Debris, defects and demons

Before giving definitions, we give a classic illustration. Fig. 1
shows CCA using von Neuman neighborhoods on a 500 by 500
array of cells. Periodic boundary conditions are used so that cells
on the right edge have neighbors from the left edge and analogous
comments apply to the left, top and bottom edges. Four different
time steps are shown in Fig. 1. The automata were implemented in
J [14] using the automata templates from [15]. The cyclic cellular
automata uses N ¼ 14 states and the initial states for each cell are
chosen randomly and uniformly from those states. The states are
shown cyclically with hue, running from red through
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intermediates to green, and then blue and magenta as the states
run from 0 to N�1. The upper left portion of the figure occurs after
75 time steps and one can observe rough ‘‘debris’’ regions that
have not substantially evolved and ‘‘droplets’’ of color, with some
waves of changes moving across them. The upper right shows the
result after 150 time steps and we see the droplets cover a
majority of the region, but some spiral ‘‘defects’’ have begun to
evolve. After 225 time steps, shown on the lower left, we see many
spirals formed and some of them have grown quite large. Here the
shortest possible nontrivial periodicity that can occur is 14 and
the black pixels mark the edges of regions that have repeated with
that optimal periodicity. The spirals (defects) that are surrounded
by black pixels have optimal period, and are called ‘‘demons’’. The
bottom right of the figure shows the situation after 975 time
steps. At this point the demons have overtaken most of the other
spirals and the black pixels surround small regions that are
defects with periods higher than 16, which will soon also be
overtaken by the demons. Many movies showing the evolution of
the CCA described in this paper may be found at [16]. Watching
the phase transitions evolve reinforces the dynamic nature of
these processes.

Following [7,8] we describe these phases more carefully. The
bond between two neighbors is open if the difference between
their states is {�1,0,1} mod N. Otherwise the bond is closed. Note
that once a bond is open it must remain open for all future time. A
site is considered debris at a given time if it has no open bonds
with its neighbors. The connected components of the non-debris
sites are called droplets. A loop within a droplet using open bonds
could possibly include only bonds {�1, 0,1} mod N. If one takes a
running sum (not mod N) of the differences mod N (so each
difference is from {�1, 0,1}) along such a loop, then the total
must be zero mod N since each cell value appears once in a
positive and a negative sense. Thus, the sum of the differences
must be a multiple of N. If the multiple is not zero, then the loop is
part of a defect. That property of the loop will be preserved as
the automaton evolves, and each cell in a defect must even-
tually continue cycling through the states 0,1, 2,y, N�1, 0,y
forevermore; although it may take more than one time step

between each change of state. Eventually every cell neighboring
such a loop must cycle. Then their neighbors must cycle.
Eventually every cell in such a droplet must cycle, and thus the
droplet must grow since every neighbor of the droplet will
eventually join the droplet since the neighbor in the droplet will
eventually cycle through all values. Of course the speed of such
cycling need not be constant until it is part of a demon. If a defect
loop runs through all states as efficiently as possible on the lattice
(minimal period having no unnecessary 0 bonds) then it is a
demon. Given random initial states for all the cells on an infinite
lattice, demons are expected to occur somewhere with probability
one. Thus, demon domination is the expected long-term state.

Fig. 2 shows zooms into two of the spirals from the end state of
the experiment shown in Fig. 1. The closed bonds are demarcated
by black lines. On the left is a demon since if one marches around
the ‘‘L’’-shaped closed bonds, one moves through the 14 states
using 14 cells crossing 14 bonds; all those bonds correspond to
one-level change in state, all the same in a positive or negative
sense. That property persists for all future times and thus that
spiral is a demon. The spiral on the right is a defect, but not a
demon. Any short path around the closed bonds using left–right
and up–down bonds requires more than 14 cells and visits yellow
and violet cells twice. Such a loop must persist but changes can
(and will, with probability one) occur to the closed bonds so that
this region becomes part of a more efficient, minimal period,
defect that is a demon.

However, the arrangement of cells may not allow for a demon
loop of length N. For example, with von Neuman neighborhoods, it
is not possible for a loop to return to itself using an odd number of
bonds. Thus, if N ¼ 15 then a demon loop must contain at least
one bond where there is no change in state. Fig. 3 shows this
situation where a loop around the closed bonds visits light green
twice. Also note debris, droplets, defects and demons are all
apparent after 255 time steps.

3. Moore neighborhoods

We now turn to discussing other neighborhood patterns using
sub-neighborhoods of the 3 by 3 neighborhood surrounding the
cell. We number a 3 by 3 neighborhood so that the center has
number 4 as shown in Fig. 4. Letting P denote the neighborhood
pattern, we write P ¼ 1357 for the von Neuman neighborhoods
used in the previous section. The complete Moore neighborhood
thus has pattern given by P ¼ 01235678. The behavior of the CCA
with this sense of neighbor is for the most part qualitatively
similar to what we saw in Fig. 1, but some distinctions should be
made. Fig. 5 shows the N ¼ 20 state evolution at times 63, 105, 147
and 231, respectively. Notice the droplets form spirals develop,
Notice the droplets form, spirals develop, dominating and

Fig. 1. Classic CCA with N ¼ 14 showing droplet formation, spiral formation and

demon domination.

Fig. 2. CCA with N ¼ 14. A demon and a non-demon defect with inactive bonds

shown in black.
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