
Technical Section

Normals estimation for digital surfaces based on convolutions$
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a b s t r a c t

In this paper, we present a method that we call on-surface convolution which extends the classical notion

of a 2D digital filter to the case of digital surfaces (following the cuberille model). We also define an

averaging mask with local support which, when applied with the iterated convolution operator, behaves

like an averaging with large support. The interesting property of the latter averaging is the way the

resulting weights are distributed: given a digital surface obtained by discretization of a differentiable

surface of R3, the masks isocurves are close to the Riemannian isodistance curves from the center of

the mask. We eventually use the iterated averaging followed by convolutions with differentiation masks

to estimate partial derivatives and then normal vectors over a surface. The number of iterations required

to achieve a good estimate is determined experimentally on digitized spheres and tori. The precision of

the normal estimation is also investigated according to the digitization step.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of geometrical and differential properties and
quantities of objects known through their digitizations is an
important goal of discrete geometry. One of the classical problems
is simply to measure the length of a curve (or a perimeter) in the
digital plane [1,2]. One may also quote the estimation of tangents
or normals to a curve [3], normal vectors over a surface [4], or area
of a digital surface [5–7].

In 2D, a whole set of methods rely on the digital straight

segments recognition algorithm [8] used to find maximal
line segments in a curve, which may in turn be used to estimate
the curve’s length or its tangent vectors [3]. These methods
have been extended to the 3D case with digital plane recog-
nition to estimate the area of the surface of a 3D digital
object [9]. Directional tangent estimation based on straight
segments recognition was used in [10] to compute normal
vectors on a digital surface and later in [11] for the nD case. A
first remark about this set of methods is that they are sensitive to
noise.

In the case of digital surfaces, another method was introduced
by Papier and Franc-on [12,13] to estimate the normal vector field.
It is based on a weighted averaging of the canonical normals in a
neighborhood of each surfel. Their method generalizes to large

neighborhoods the approach proposed by Chen et al. [14] and is
very close to the one we propose here, although it differs in at
least two points: umbrellas in Papier’s method grow following a
breadth-first traversal of the surfels v-adjacency graph, whereas
our method may be seen as the result of an averaging process
using masks which grow in a more geodesic and isotropic way (see
Section 4.2). Also, their averaging process applies on canonical
normal vectors, whereas our method relies on the averaging of the
surfel centers. Furthermore, very few tests have been conducted
by Papier to determine the optimal size of the neighborhood taken
into account by the averaging process.

The normal estimation method introduced here (Section 4.1) is
based on the notion of on-surface convolution (Section 3) which
extends to digital surfaces the classical 2D filters used in image
processing. Using an averaging mask defined locally, we apply an
iterated convolution operation on the centers of the surfels. Then,
we use two orthogonal differentiation operators on the resulting
centers to estimate partial derivatives, and by a cross product we
obtain normal vectors. We will study in Section 4.3 the optimal
number of convolution iterations for the normal estimation on
two basic shapes: a sphere and a torus.

Some conclusions and perspectives are presented, including
the problem of higher order derivatives and curvature estimation.

2. Digital voxel objects and digital surfaces

In this paper, we simply call a digital object a subset of Z3,
the classical 3D grid. Such an object is seen as a set of unit
cubes called object voxels centered at points with integer
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coordinates. Background voxels are voxels that do not belong to
the object.

The surface of a digital object can be defined as a set of
surfels, provided with relevant adjacency graphs. Surfels are unit
squares that are shared by two 6-adjacent voxels. There are
exactly six types of surfels according to the direction of their
normal vectors. Thus, a surfel can be uniquely defined by the data
of its center’s coordinates and its orientation. In the sequel, a
surfel is a pair ðp; ~nÞ where p 2 R3 (the center) and ~n 2

fð�1;0;0Þ; ð0;�1;0Þ; ð0;0;�1Þg (the normal vector). A digital surface

is a set of surfels which is the set of all the surfels of a digital
object.

We will use in the sequel the two functions s and n which
associate to a surfel s ¼ ðp; ~nÞ, respectively, its center sðsÞ ¼ p and
its normal vector nðsÞ ¼ ~n.

We can define two adjacency relations between surfels: the e-
adjacency and the v-adjacency relations. See [15] for further
details.

A relation of e-adjacency (see Fig. 1(b)) and v-adjacency
(Fig. 1(c)) can be defined between some surfels that share an
edge or a vertex. Note that the considered adjacency relation
(6, 18) on the set of voxels must be taken into account when
defining the e-adjacency and v-adjacency relations [16]. In this
way, a surfel has exactly four e-neighbors, but has a variable
number of v-neighbors.

Next, we define a loop in a digital surface S as an e-connected
component of the set of the surfels of S which share a given vertex
w. For example, if S is the surface of the object depicted in Fig. 1(a)
(which is made of three voxels), then the vertex w defines two
loops: one that contains the six gray surfels, and another one in
the back with three surfels. Two surfels are v-adjacent iff they
belong to a common loop of S.

3. On-surface convolution

The work presented in the next sections illustrates the use of
on-surface convolution, which we introduce here. In the sequel of
the paper, S is a digital surface and S is a vector space over R. We
define the space of digital surface filters over S as the set of
functions from S�S to R.

Definition 1 (Generalized convolution operator). For f : S�!S and
F : S� S�!R, we define the operator C as follows:

Cf ;F : S�!S

xC
X
y2S

F ðx; yÞ � fðyÞ.

Intuitively, C acts like a convolution of the values of f on the
surface with a convolution kernel whose values should depend on
the relative positions of two surfels. We also define the iterated
operator CðnÞ.

Definition 2 (Iterated convolution operator). The iterated convolu-

tion operator is defined for n 2 N by

Cð0Þf ;F ¼ f ;

CðnÞf ;F ¼ CCðn�1Þ
f ;F

;F
if n40:

8<
:

Next, we define an averaging and two derivative filters which
we will use in Section 4.1 to estimate the normal field on a digital
surface.

3.1. The averaging filter

In order to define convolution filters on an arbitrary digital
surface, we define some local masks, and then obtain larger masks
by iteration. We define a local averaging mask W avg : S� S/R.
This mask should be seen as a wrapping of the 2D classical mask
(Fig. 2(a)) which follows the local shape of the digital surface.
The choice of this mask is a heuristic. We tried several masks
but this one appears to give particularly good results relating to
the Riemannian metrics (see Section 4.2). Intuitively, we define
this mask as a generalization of the 2D local mask (and indeed
they coincide on a planar surface). The weights are the same
as in 2D for the e-neighbors, but for the strict v-neighbors
(i.e., v-neighbors which are not e-neighbors) the weight of which
would be a unique pixel in 2D is split and distributed over the
several strict v-neighbors of the loop. The global mass of the mask
remains unchanged.

More precisely, let x and y be two surfels of S such that
y 2 NvðxÞ. If y is v-adjacent but not e-adjacent to x then there
is a single loop L of S that contains both x and y. In this case, we
define dxðyÞ ¼ cardðLÞ � 3. The number dxðyÞ is used to take into
account the number of surfels in a loop containing x which are not
e-adjacent or equal to x. Within a loop, all these surfels will end
up with a total contribution of 1

16.
If there are no such surfels, the weight 1

16 is spread among
the two e-neighbors of x in the loop. Thus, if y is e-adjacent
to x, then y has exactly two e-neighbors in NvðxÞ, say s and t. We
define gxðyÞ as the number of surfels in fs; tg which are e-adjacent
to x.

Now, let x be a surfel of S. For any surfel y 2 S we define the
weight W avgðx; yÞ as follows:

W avgðx; yÞ ¼

1

4
if y ¼ x;

1

8
þ
gxðyÞ
32

if y 2 NeðxÞ;

1

16 � dxðyÞ
if y 2 NvðxÞnNeðxÞ;

0 if yeNvðxÞ:

8>>>>>>>>><
>>>>>>>>>:

We may say that W avg defines an averaging mask because of the
following property, which we prove in the Appendix.
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Fig. 1. Loops and neighborhoods on a digital surface. (a) A loop of surfels (in gray).

(b) The e-neighborhood of x. (c) The v-neighborhood of x.
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Fig. 2. Illustrations of the masks definition. (a) A 2D mask. (b) A surfel x (in gray)

and the values of 16 �W avgðx; yÞ for the surfels y of NvðxÞ [ fxg. (c) Ordering of

vertices and edges for a given surfel s.

S. Fourey, R. Malgouyres / Computers & Graphics 33 (2009) 2–10 3



Download English Version:

https://daneshyari.com/en/article/442118

Download Persian Version:

https://daneshyari.com/article/442118

Daneshyari.com

https://daneshyari.com/en/article/442118
https://daneshyari.com/article/442118
https://daneshyari.com

