
Chaos and Graphics

Evaluating Second Life for the collaborative exploration of 3D fractals

Paul Bourke �

WASP, University of Western Australia, Perth, WA 6009, Australia

a r t i c l e i n f o

Keywords:

Fractal geometry

Game engine

Multiplayer

Immersion

Second Life

a b s t r a c t

This paper explores the use of online digital world Second Life as an environment in which one can represent

and explore three-dimensional (3D) fractals, and in addition, present them to others in a collaborative and

engaging fashion. Second Life at its core provides a means whereby multiple remote participants can engage

with 3D geometry within a virtual environment. It has been chosen as a likely candidate for this exploration

for a number of additional reasons. These include the easy-to-learn user interface, its relatively widespread

uptake compared to the alternatives, the availability of the software for all the major operating systems, its

non-aggressive social networking foundation, and its scripting capability. The suitability of Second Life will

be evaluated through examples. These examples will attempt to create representations of range of the

different types of 3D fractals and a discussion of the outcomes will be presented.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Two-dimensional (2D) fractals have generally been studied
more than three-dimensional (3D) fractals and their generation is
supported by a number of software packages, such as FracInt [1].
In contrast, exploration of higher dimensional fractals requires a
more sophisticated 3D user interface, more complex visualization
techniques, and places higher demands on capabilities of the
graphics hardware. As a result, softwares that allow one to study
3D fractals are far less common and often written by individual
researchers. Alternatively, 3D fractals are created within general
purpose rendering/modeling packages in which the fractals are
either created manually or by using an internal scripting/
programming language to automate what is often an iterative or
recursive procedure. These software tools are often available only
for a particular computer platform, are often relatively expensive
commercial packages, or are geared towards an interactive
representation of fractal geometries for a single user. As a result
the process of conveying and sharing a sense of the 3D geometry
is relegated to the production of precomputed 2D projections,
namely, rendering images or movies. Even these 2D projected
representations are generally not presented as a real-time
collaborative experience but a delayed-in-time file exchange
through email and web pages.

By contrast, multiplayer games by their very nature (at least
for first person shooters) allow participants to engage directly and
interactively with 3D geometry within a virtual world. They are
generally designed for a broad audience and as such are available
for a number of operating systems, are easy to install, and have a

well-designed user interface. Additionally they tend to exploit the
capabilities of modern graphics cards to achieve the highest visual
quality for a target frame rate.

Second Life is an online 3D virtual environment managed with
a server–client software model and created by Linden Labs [2]. In
addition to participants being able to create and modify their
assets in virtual environments, Second Life provides a rich
environment for social networking [3]. Indeed this is perhaps
the most engaging activity for many participants. These char-
acteristics mean it has also been explored for collaborative
learning experiences [4]. The discussion here then is to determine
to what extent Second Life can be employed to represent and
convey 3D fractal geometries. Most construction activities within
Second Life involve manual creation of buildings by choosing
from the rich set of geometric building blocks provided (boxes,
prisms, spheres, etc.). This construction occurs by using what is
essentially a built-in 3D modeling system. This manual building
process can be applied to the iterative/recursive nature of most
(but not all) 3D fractals, but fortunately there is also a built-in
scripting language that can be used to automatically construct 3D
forms. The evaluation then largely consists of determining to what
extent the Linden Scripting Language (LSL) of Second Life [5] can
be used to create some of the classical 3D fractals. Only actual 3D
fractals will be considered. Image or geometric fractals that are
only 2D can be explored collaboratively with simpler video
conferencing tools that generally support image sharing through
whiteboards, for example.

2. Evaluation

The first classical 3D fractal to be considered is the Menger
sponge, first described by the Austrian mathematician Karl

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2008.08.004

� Tel.: +618 6488 8097; fax: +618 6488 8088.

E-mail address: paul.bourke@uwa.edu.au

Computers & Graphics 33 (2009) 113–117

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.08.004
mailto:paul.bourke@uwa.edu.au

Menger [6]. This is certainly an object that can be created
manually quite easily with Second Life modeling tools. One begins
with a single cube, duplicates it 27 times in a 3�3�3 grid, then
removes the cube in the center of each face and center of the
entire grid. This resulting collection of 20 cubes is then grouped
together and considered to be the cubic element to which the
process is repeated. This replication and positioning when
performed manually quickly becomes tiring and can be time
consuming as the number of cubes increases. Fortunately it is
relatively easy to implement the iterative process using the
Second Life scripting language. An example of a LSL script is given
below that takes the current stage of a Menger sponge as input
and performs one iteration to create 20 copies for the next stage.

default {

touch_start(integer anumber) {

integer i;

integer j;

integer k;

vector p;

float size ¼ 1; // adjusted for the scale at each

stage

for (k ¼ �1;ko ¼ 1;k++) {//‘‘vertical’’ layer
for (i ¼ �1;io ¼ 1;i++) {

for (j ¼ -1;jo ¼ 1;j++) {

if (k ¼ ¼ 0) {

if (i ! ¼ 0 &&j ! ¼ 0) {

p ¼ llGetPos()+o-size*i,-size*j,

k*size4
llRezObject(‘‘MengerLast’’, p, ZERO_

VECTOR, ZERO_ROTATION, 1);

}

}else if (i ! ¼ 0 || j ! ¼ 0) {

p ¼ llGetPos()+o-size*i,-size*j,

k*size4
llRezObject(‘‘MengerLast’’, p, ZERO_

VECTOR, ZERO_ROTATION, 1);

}

}

}

}

}

}

Exact details of some of the functions and how to create and
activate the script are not appropriate here. The purpose is simply
to show the C/Java style of the scripting language. In general
terms, the above script is activated by touching the object to
which the script is attached. The result of applying it once, twice,
and three times is shown in Fig. 1.

One characteristic of Second Life and most gaming environ-
ments is texture mapping, that is, a means of presenting
apparently complex structure by using images rather than
geometry. Modern graphics cards are optimized to handle these
texture maps and Second Life exploits this capability. In Fig. 1 note
how additional apparent iterations have been conveyed with a
texture map, in this case a 2D image of the side of a Menger
sponge. Fig. 1 shows four geometric iterations, an additional three
stages are suggested by the texture map.

Within the Second Life environment the fractal structures
discussed here are represented as physical objects within a virtual
world. Participants can enter the cavities (but by default not the
solid portions) and fly in and around, all the time potentially
engaging in discussions by text or talking to other participants.
This collaborative exploration of fractal geometry within a virtual
world can be an exciting and engaging experience for anyone who
has tried to share a sense of such forms using traditional static 2D
rendered images.

This first example highlights a significant limitation of Second
Life for the representation of many fractals, that is, the limited
number of geometric primitives supported within a particular
area of land. The number of cubes within the Menger sponge
increases by a factor of 20 on each iteration. So it is a good
example of a fractal that, if represented geometrically, will
eventually consume any graphics system. The above 8000 cubes
would be impossible to create in most areas within Second Life.
Indeed more than 1000 geometric primitives is usually proble-
matic. These imposed limits are not due to the power of current
graphics card technology but rather pragmatic considerations the
Second Life developers need to consider in order to prevent
activities within the virtual environment that would result in
some participants having a less than satisfactory experience. A
secondary constraint is a limit of 256 geometric elements that can
be linked (grouped) together to form a single entity. While not an
impediment to the creation of complex objects, it does place
constraints on the management of fractals made from a large
number of elements.

ARTICLE IN PRESS

Fig. 1. Menger sponge: four geometric iterations and additional iterations conveyed using texture maps.

P. Bourke / Computers & Graphics 33 (2009) 113–117114

Download English Version:

https://daneshyari.com/en/article/442128

Download Persian Version:

https://daneshyari.com/article/442128

Daneshyari.com

https://daneshyari.com/en/article/442128
https://daneshyari.com/article/442128
https://daneshyari.com

