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Abstract

As multi-core processor systems become more and more widespread, the demand for efficient parallel algorithms also propagates

into the field of computer graphics. This is especially true for physically based simulation, which is notorious for expensive numerical

methods. In this work, we explore possibilities for accelerating physically based simulation algorithms on multi-core architectures.

Two components of physically based simulation represent a great potential for bottlenecks in parallelisation: implicit time integration

and collision handling. From the parallelisation point of view these two components are substantially different. Implicit time integration

can be treated efficiently using static problem decomposition. The linear system arising in this context is solved using a data-parallel

preconditioned conjugate gradient algorithm. The collision handling stage, however, requires a different approach, due to its dynamic

structure. This stage is handled using multi-threaded programming with fully dynamic task decomposition. In particular, we propose a

new task splitting approach based on a reasonable estimation of work, which analyses previous simulation steps. Altogether,

the combination of different parallelisation techniques leads to a concise and yet versatile framework for highly efficient physical

simulation.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Physically based simulation is an important component
of many applications in current research areas of computer
graphics. The most prominent examples are fluid, soft
body, and cloth simulation. All of these applications utilise
computationally intensive methods and runtimes for
realistic scenarios are often excessive. Obviously, increasing
the realism of the simulation by using more accurate
methods, like finite elements, further aggravates the
problem. In this paper we investigate on parallel techniques

for improving the performance of physically based simula-
tion codes on multi-core architectures.
Generally, most of the computation time is spent on two

stages, time integration and collision handling. In the
following, we will therefore consider these two major
bottlenecks, which are present in almost every physically
based simulation. Although we focus on cloth simulation
in this work, the techniques proposed herein transfer to
many other applications, like e.g. thin-shell and three-
dimensional soft body simulation.

1.1. Implicit time integration

Often, the physical model at the centre of a specific
simulator gives rise to stiff differential equations with
respect to time. For stability reasons implicit schemes are
widely accepted as the method of choice for numerical time
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integration (cf. [1]). Implicit schemes require the solution of
a (non-)linear system of equations at each time step. As a
result of the spatial discretisation, the matrix of this system
is usually very sparse. There are essentially two alternatives
for the numerical solution of the system. One is to use an
iterative method such as the popular conjugate gradients
(cg) algorithm [2]. Another is to use direct sparse solvers,
which are usually based on fill-reducing reordering and
factorisation. The cg-method is favoured in computer
graphics as it offers much simpler user interaction,
alleviates the integration of arbitrary boundary conditions
and allows balancing accuracy against speed. We will
therefore focus on the cg-method in this work.

1.2. Collision handling

Most practical applications for deformable objects
include collision and contact situations. Maintaining an
intersection-free state at every instant is of utmost
importance in this context and involves the detection of
proximities (collision detection) and the reaction necessary
to prevent interpenetrations (collision response). In the
remainder, we refer to these two components collectively as
collision handling. We usually distinguish between external
collisions (with other objects in the scene) and self-
collisions. Both of these types require specifically tailored
algorithms for an efficient treatment. Even with common
acceleration structures (see Section 3.4) these algorithms
are still computationally expensive. For complex scenarios
with complicated self-collisions, the collision handling can
easily make up more than half of the overall computation
time. It is therefore a second bottleneck for the physical
simulation and hence deserves special attention.

1.3. Overview and contributions

In our previous work towards distributed memory
architecture we developed basic parallelisation strategies
for the two components of physical simulation. For the
time integration stage, which exhibits a very fine granular-
ity, we proposed a static data-parallel approach. For the
highly irregular collision handling stage we proposed
a dynamic task-parallel approach. In [3] the reader will
find more details on these design decisions. The purpose
of this work is to design efficient implementations of
these state-of-the-art parallel techniques for physical
simulation on shared-memory based multi-processor sys-
tems. We focus on the computationally most expensive
components, which are numerical time integration and
collision handling.

Implicit time integration leads to the solution of linear
systems, for which we propose a parallel preconditioned cg
algorithm. We developed an efficient implementation of
this method and provide a detailed explanation of
preconditioner application and matrix-vector multiplica-
tion [4]. In contrast to this, our parallel numerics code for
distributed memory architectures employs the message

passing-based programming model provided by the PETSc
toolkit [5]. Although this code could theoretically be ported
to shared-memory platforms, our aim here is to explicitly
take advantage of the multi-core architecture, which
enables a considerably different programming approach.
As an example, inter-task communication can be imple-
mented far more efficiently in the shared-memory setting
by simply sharing data structures among threads. Further-
more, our shared-memory numerics code is entirely based
on OpenMP directives. Therefore, it is much easier to
integrate into existing sequential simulator code. It would
require time-intensive redesign when adapting the code to
the single program multiple data-paradigm of distributed
memory architectures.
The performance of our numerical algorithms can be

further increased using single precision arithmetic. We
discuss this aspect in detail and explain how to implement
the required modifications. Additionally, we investigate the
performance of the parallel numerics code when applied to
large input data.
For parallel collision handling we discuss and evaluate a

novel task decomposition scheme based on temporal
coherence data. In particular, we take advantage of the
tight coupling of multi-core processors to derive work
estimates for tasks with very low overhead. Moreover, we
show how the resulting highly dynamic task-parallel
execution process can be efficiently mapped to shared-
memory architectures by using lock-free synchronisation
mechanisms for task management. We describe the
implementation of this technique based on specific atomic
processor instructions and experimentally assess the
resulting performance gain.
Finally, we present extensive experimental studies for all

of the presented methods on three recent multi-core
systems, showing that our approach scales well on different
platforms.

2. Related work

Parallel numerics: The parallel solution of large sparse
linear systems is a well explored but still active field in high
performance computing. Most of the work from this field
focuses on problem sizes that are considerably larger than
the ones dealt with in computer graphics. Therefore,
standard techniques do not necessarily translate directly
to our application area. In general, good overviews on
parallel numerical algebra can be found in the textbook by
Saad [6] and the report compiled by Demmel et al. [7].
Parallel implementation of sparse numerical kernels like
the ones used in this work, has already been investigated by
O’Hallaron [8]. Oliker et al. [9] explored node ordering
strategies and programming paradigms for sparse matrix
computations. However, they did not consider parallel
preconditioning.

Parallel cloth simulation: Previous research on parallel
cloth simulation addressed shared address-space [10–12] as
well as message passing-based architectures [13–16]. Since
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