
Technical Section

CHuMI viewer: Compressive huge mesh interactive viewer

Clément Jamin a,b,�, Pierre-Marie Gandoin a,c, Samir Akkouche a,b

a Université de Lyon, CNRS
b Université Lyon 1, LIRIS, UMR5205, F-69622, France
c Université Lyon 2, LIRIS, UMR5205, F-69676, France

a r t i c l e i n f o

Article history:

Received 21 December 2008

Received in revised form

21 March 2009

Accepted 28 March 2009

Keywords:

Lossless compression

Interactive visualization

Large meshes

Out-of-core

a b s t r a c t

The preprocessing of large meshes to provide and optimize interactive visualization implies a complete

reorganization that often introduces significant data growth. This is detrimental to storage and network

transmission, but in the near future could also affect the efficiency of the visualization process itself,

because of the increasing gap between computing times and external access times. In this article, we

attempt to reconcile lossless compression and visualization by proposing a data structure that radically

reduces the size of the object while supporting a fast interactive navigation based on a viewing distance

criterion. In addition to this double capability, this method works out-of-core and can handle meshes

containing several hundred million vertices. Furthermore, it presents the advantage of dealing with any

n-dimensional simplicial complex, including triangle soups or volumetric meshes, and provides a

significant rate-distortion improvement. The performance attained is near state-of-the-art in terms of

the compression ratio as well as the visualization frame rates, offering a unique combination that can be

useful in numerous applications.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh compression and mesh visualization are two fields of
computer graphics that are particularly active today, whose
constraints and goals are usually incompatible, even contra-
dictory. The reduction of redundancy often goes through signal
complexification, because of prediction mechanisms whose
efficiency is directly related to the depth of the analysis. This
additional logical layer inevitably slows down the data access and
creates conflicts with the speed requirements of real-time
visualization. Conversely, for efficient navigation through a mesh
integrating the user’s interactions dynamically, the signal must be
carefully prepared and hierarchically structured. This generally
introduces a high level of redundancy and sometimes comes with
data loss, if the original vertices and polyhedra are approximated
by simpler geometrical primitives. In addition to the on-disk
storage and network transmission issues, the data growth implied
by this kind of preprocessing could become detrimental to the
visualization itself since the gap between the processing times
and the access times from external memory is increasing.

In this article, we attempt to reconcile compression and
interactive visualization by proposing a method that combines

good performance in terms of both the compression ratio and the
visualization frame rates. The interaction requirements of a
viewer and a virtual reality system are quite similar in terms of
the computational challenge but the two applications use
different criteria to decide how a model is viewed and updated.
Our goal here is to take advantage of excellent view independent
compression and introduce distance-dependent updates of the
model during the visualization. As a starting point, the in-core
progressive and lossless compression algorithm introduced by
Gandoin and Devillers [1] has been chosen. On top of its
competitive compression ratios, out-of-core and LOD capabilities
have been added to handle meshes with no size limitations and
allow local refinements on demand by loading the necessary and
sufficient data for an accurate real-time rendering of any subset of
the mesh. To meet these goals, the basic idea consists in
subdividing the original object into a tree of independent meshes.
This partitioning is undertaken by introducing a primary
hierarchical structure (an nSP-tree) in which the original data
structures (a kd-tree coupled to a simplicial complex) are
embedded, in a way that optimizes the bit distribution between
geometry and connectivity and removes the undesirable block
effects of kd-tree approaches.

After a study of related works (Section 2) focusing on the
method chosen as the starting point (Section 3), our contribution
is introduced by an example (Section 4), then detailed in two
complementary sections. First, the algorithms and data structures
of the out-of-core construction and compression are introduced
(Sections 5 and 6), then the visualization point of view is adopted

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2009.03.029

� Corresponding author Tel.: +33 472448064.

E-mail addresses: clement.jamin@liris.cnrs.fr (C. Jamin),

pierre-marie.gandoin@liris.cnrs.fr (P.-M. Gandoin), samir.akkouche@liris.cnrs.fr

(S. Akkouche).

Computers & Graphics 33 (2009) 542–553

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.03.029
mailto:clement.jamin@liris.cnrs.fr
mailto:pierre-marie.gandoin@liris.cnrs.fr
mailto:samir.akkouche@liris.cnrs.fr
mailto:samir.akkouche@liris.cnrs.fr


to complete the description (Section 7).Finally, experimental
results are presented and the method is compared to prior art
(Section 8).

2. Previous works

2.1. Compression

Mesh compression is a domain situated between computa-
tional geometry and standard data compression. It consists in
efficiently coupling geometry encoding (the vertex positions) and
connectivity encoding (the relations between vertices), and often
addresses manifold triangular surface models. We distinguish
single-rate algorithms, which require full decoding to visualize
the object, and multiresolution methods that allow one to see the
model progressively refined while decoding. Although historically
geometric compression began with single-rate algorithms, we
have chosen not to detail these methods here. The reader can refer
to surveys [2,3] for more information. For comparison purposes,
since progressive and out-of-core compression methods are very
rare, Section 8 will refer to Isenburg and Gumhold’s well-known
single-rate out-of-core algorithm [4]. Similarly, lossy compression,
whose general principle consists in a frequential analysis of the
mesh, is excluded from this study.

Progressive compression is based on the notion of refinement.
At any time of the decoding process, it is possible to obtain a
global approximation of the original model, which can be useful
for large meshes or for network transmission. This research field
has been very productive for approximately 10 years, and rather
than being exhaustive, here the choice has been to adopt a
historical point of view. Early techniques of progressive visualiza-
tion, based on mesh simplification, were not compression-
oriented and often induced a significant increase in the file size,
due to the additional storing cost of a hierarchical structure [5,6].
Afterward, several single-resolution methods were extended to
progressive compression. For example, Taubin et al. [7] proposed a
progressive encoding based on Taubin and Rossignac’s algorithm
[8]. Cohen-Or et al. [9] used techniques of sequential simplification
by vertex suppression for connectivity, combined with posi-
tion prediction for geometry. Alliez and Desbrun [10] proposed an
algorithm based on progressive removal of independent vertices,
with a retriangulation step under the constraint of maintaining the
vertex degrees around 6. Contrary to the majority of compression
methods, Gandoin and Devillers [1] gave the priority to geometry
encoding. Their algorithm, detailed in Section 3, gives competitive
compression rates and can handle simplicial complexes in any
dimension, from manifold regular meshes to triangle soups. Peng
and Kuo [11] took this paper as a basis to improve the compression
ratios using efficient prediction schemes (sizes decrease by roughly
15%), still limiting the scope to triangular models.

2.2. Large meshes processing

Working with huge data sets implies to develop out-of-core
solutions for managing, compressing or editing meshes. Lind-
strom and Silva [12] proposed a simplication algorithm based on
[13] whose memory complexity is neither dependent on the size
of the input nor on the size of the output. Cignoni et al. [14]
introduced a data structure called Octree-based External Memory
Mesh (OEMM), which enable external memory management and
simplification of very large triangle meshes, by loading only
selected sections in main memory. Isenburg et al. [15] developed a
streaming file format for polygon meshes designed to work with
large data sets. Isenburg et al. [16] proposed a single-rate

streaming compression scheme that encodes and decodes
arbitrary large meshes using only minimal memory resources.
Cai et al. [17] introduced the first progressive compression
method adapted to very large meshes, offering a way to add
out-of-core capability to most of the existing progressive
algorithms based on octrees. The next section pays particular
attention to out-of-core visualization techniques.

2.3. Visualization

Fast and interactive visualization of large meshes is a very
active research field. Generally, a tree or a graph is built to handle
a hierarchical structure which makes it possible to design out-of-
core algorithms: at any moment, only necessary and sufficient
data are loaded into memory to render the mesh. Level of detail,
view frustum and occlusion culling are widely used to adapt
displayed data to the viewport. Rusinkiewicz and Levoy [18]
introduced QSplat, the first out-of-core point-based rendering
system, where the points are spread in a hierarchical structure of
bounding spheres. This structure can easily handle levels of detail
and is well-suited to visibility and occlusion tests. Several million
points per second can thus be displayed using adaptive rendering.
El-Sana and Chiang [19] proposed a technique to segment triangle
meshes into view-dependence trees, allowing external memory
simplification of models containing a few millions polygons, while
preserving an optimal edge collapse order to enhance the image
quality. Later, Lindstrom [20] developed a method for interactive
visualization of huge meshes. An octree is used to dispatch the
triangles into clusters and to build a multiresolution hierarchy. A
quadric error metric is used to choose the representative point
positions for each level of detail, and the refinement is guided by
visibility and screen space error. Yoon et al. [21] proposed a
similar algorithm with a bounded memory footprint: a cluster
hierarchy is built, each cluster containing a progressive submesh
to smooth the transition between the levels of detail. Cignoni et al.
[22] used a hierarchy based on the recursive subdivision of
tetrahedra in order to partition space and guarantee varying
borders between clusters during refinement. The initial construc-
tion phase is parallelizable, and GPU is efficiently used to improve
frame rates. Gobbetti and Marton [23] introduced the far voxels,
capable of rendering regular meshes as well as triangles soups.
The principle is to transform volumetric subparts of the model
into compact direction-dependent approximations of their
appearance when viewed from a distance. A BSP tree is built,
and nodes are discretized into cubic voxels containing these
approximations. Again, the GPU is widely used to lighten the CPU
load and improve performance. Cignoni et al. [24] proposed
a general formalized framework that encompasses all these
visualization methods based on batched rendering. Recently,
Hu et al. [25] introduced the first highly parallel scheme for
view-dependent visualization that is implemented entirely on
programmable GPU. Although it uses a static data structure
requiring 57% more memory than an index triangle list, it allows
real-time exploration of huge meshes.

2.4. Combined compression and visualization

Progressive compression methods are now mature (the rates
obtained are close to theoretical bounds) and interactive
visualization of huge meshes has been possible for several years.
However, even if the combination of compression and visualiza-
tion is often mentioned as a perspective, very few papers deal
with this problem, and the files created by visualization
algorithms are often much larger than the original ones. In fact,
compression favors a small file size to the detriment of fast data

ARTICLE IN PRESS

C. Jamin et al. / Computers & Graphics 33 (2009) 542–553 543



Download	English	Version:

https://daneshyari.com/en/article/442196

Download	Persian	Version:

https://daneshyari.com/article/442196

Daneshyari.com

https://daneshyari.com/en/article/442196
https://daneshyari.com/article/442196
https://daneshyari.com/

