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a b s t r a c t

This paper presents an interpolating ternary butterfly subdivision scheme for triangular meshes based

on a 1–9 splitting operator. The regular rules are derived from a C2 interpolating subdivision curve, and

the irregular rules are established through the Fourier analysis of the regular case. By analyzing

the eigenstructures and characteristic maps, we show that the subdivision surfaces generated by this

scheme is C1 continuous up to valence 100. In addition, the curvature of regular region is bounded.

Finally we demonstrate the visual quality of our subdivision scheme with several examples.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Subdivision surfaces are valued in geometric modeling appli-
cations for their flexibility. Since 1978 [1,5], subdivision has been
an active research area. Advances in computer memory have
made subdivision methods practical in the late 1990s and this has
prompted a large amount of new research work [2,9,16,25].
The flexibility primarily comes from the fact that objects to be
subdivided can be of arbitrary topology and thus can be
represented in a form that makes them easy for designing,
rendering and manipulating.

Simply speaking, a subdivision surface is defined as the limit of
a sequence of meshes. Each mesh in the sequence is generated
from its predecessor using a group of topological and geometric
rules. Topological rules are used to produce a finer mesh from a
coarse one while geometric rules are designed to compute the
positions of vertices in the new mesh. These two groups of rules
constitute a subdivision scheme.

Subdivision can be distinguished into two classes: interpolat-
ing schemes [7,28] and approximating schemes [1,5,17,22]. If the
old vertices are changed during refinement, the subdivision
algorithm is considered to be approximating, otherwise it is
interpolating. Although approximating algorithms yield limit
surfaces with higher continuity, interpolating algorithms enjoy

some obvious advantages which the approximating ones do not
have: interpolating schemes are more efficient for the applica-
tions requiring interpolating specified vertices. Furthermore it is
easy to generate multi-resolution surfaces by using interpolating
schemes [26].

For a long time, interpolating schemes failed to generate
surfaces with higher continuity. Although a 6-point interpolating
scheme for a curve with C2 continuity has been proposed in [24],
it is not practical to extend this scheme to a surface because too
many vertices would be included in a mask. Hassan et al. reported
an interpolating ternary subdivision scheme for curves which
achieves C2 continuity [8]. The most desirable property is that
only four points are needed to generate a new vertex. Starting
from this curve case, Dodgson et al. [4] and Li and Ma [13]
designed interpolating schemes for triangular meshes and quad-
rilateral meshes, respectively, but Li et al.’s scheme goes further in
constructing surfaces with extraordinary vertices. It is well known
that rules of a subdivision scheme for irregular meshes are
particularly important if the scheme is to be used in practical
applications [14,28], but unfortunately, irregular rules are not
investigated in Dodgson et al.’s work, making it difficult to refine a
coarse mesh with irregular vertices, which is often encountered in
practice.

In this paper, we first slightly modify Dodgson et al.’s scheme,
and then extend the regular rules to meshes with arbitrary
topology through Fourier analysis. Based on the eigenstructures
and characteristic maps, we show the C1 continuity of subdivision
surfaces for both regular and irregular regions up to valence 100.
Due to the new 1–9 splitting operator, the face number increases
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by power of 9 in each step of the proposed subdivision. For this
reason, we also explore the ability of adaptive subdivision. Finally
some examples are presented to show the visual quality of the
proposed subdivision scheme.

2. Related work

In 2002, Hassan et al. introduced interpolating ternary
subdivision curves [8] shown in Fig. 1. The advantage of this
new scheme is that it yields C2 continuous limit curves.
This subdivision scheme inserts two E-vertices into each edge of
the given control polygon, respectively, at 1

3 and 2
3 parametric

positions. A newly inserted vertex of the interpolating ternary
subdivision scheme is computed as follows:

q1 ¼ a0pk
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with free parameter m. The mask for q2 is symmetric to that of q1.
When 1

9 � m � 1
15, the scheme generates C2 limit curves [6].

Motivated by this subdivision curve, two subdivision schemes
for surfaces have been proposed [4,13] consequently. Both of their
ideas are to generalize the curve setting to surface configurations
such that the regular rules can be derived by solving a system of
equations. Although the irregular rules of [4] have been first
investigated in [15], their result does not guarantee that the limit
surfaces near extraordinary vertices are C1 continuous. Further-
more, the eigenvalue analysis of irregular subdivision matrices in
[15] takes only the 1-neighborhood of an extraordinary vertex into
consideration. But according to the rules outlined in that paper,
the smallest similar stencil should be 2-neighborhood, so that the
eigenvalues provided in that paper cannot fully demonstrate the
property of limit surfaces.

3. Regular subdivision masks

Our ternary subdivision introduces two types of new vertices:
E-vertices, parametrically on the mesh edges, and F-vertices,
parametrically at the face center. The regular rules of our
subdivision scheme are similar to [4] except for a small
modification. The regular masks for face vertex (F-vertex) and
edge vertex (E-vertex) are presented in Figs. 2 and 3, respectively.

As mentioned above, the rules of Dodgson et al.’s scheme are
derived from the ternary subdivision curve. The underlying
surface masks reduce to the curve masks when the given control
mesh collapses to a polyline along one of the three directions of
the triangular mesh, so the weights in the masks must satisfy the

following constraints:

kþ 2y ¼ a0;

2Zþ 2y ¼ a1;

Zþ 2k ¼ a2;

2y ¼ a3;

8>>>><
>>>>:

dþ � ¼ a0;

gþ aþ d ¼ a1;

xþ bþ g ¼ a2;

nþ x ¼ a3:

8>>>><
>>>>:

(3)

By applying the conditions in Eq. (3), the mask with free
parameters m, n, � can be obtained:
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In order to simplify the analysis, we suggest that two weights, �
and n, be zero. Then the shape of the E-mask is reduced to Dyn
et al.’s butterfly scheme [7]. By analyzing the subdivision matrix
with � ¼ n ¼ 0, we can compute the eigenvalues by Mathematica
5.0 or other mathematic tools:
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If m is set to be 1
11, the seventh eigenvalue is minimized and the

7th, 8th, 9th and 10th eigenvalues are then equal to 1
11. The

following eigenvalues are all less than 1
11. For our proposed regular

masks, we let m be 1
11 in this paper.

4. Masks near extraordinary vertices

4.1. Decomposition of regular masks

In order to simplify the derivation of irregular masks, we
investigate the decomposition of the regular masks first. Figs. 4
and 5 show the process of decompositions. Three 1-neighborhood

ARTICLE IN PRESS

Fig. 1. Interpolating ternary subdivision curve: mask for newly inserted vertex q1.

Fig. 2. Regular subdivision mask for a F-vertex QF (the black dot).

Fig. 3. Regular subdivision mask for an E-vertex QE (the black dot), in which we

suggest � and n be zero.
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