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a b s t r a c t

In this paper, we propose a novel method for feature-preserving mesh denoising based on
the normal tensor framework. We utilize the normal tensor voting directly for the mesh
denoising whose eigenvalues and eigenvectors are used for detecting saliency, and intro-
duce an algorithm that updates a vertex by the Laplacian of curvature which minimizes
a difference of the curvature in one neighborhood. By connecting the feature saliency with
a distance metric in the normal tensor space, our algorithm preserves sharp features more
robustly and clearly for noisy mesh data. Comparing our method with the existing ones, we
demonstrate the effectiveness of our algorithm against some synthetic noisy data and real-
world scanned data.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Surface mesh denoising has been an important research
area and its goal is to eliminate noise or spurious informa-
tion on the mesh while preserving original features. There-
fore, a good denoising algorithm should be able to remove
the noise while retaining original features as clearly as pos-
sible. In particular, to preserve sharp features such as
crease edges and corners indicated in Fig. 1, is our great
concern, since they are often blurred if no special care is
taken.

Various approaches have still been proposed to tackle
this problems on end, and are classified into three catego-
ries, depending on whether the process is performed under
a deterministic, image filtering [7,17,34] or probabilistic
point of view [6,23]. In this paper, we focus on a determin-
istic framework which is governed by an anisotropic diffu-
sion equation. Most of their approaches use a weighed
Laplacian smoothing. Representative works are Taubin’s
signal processing technique called by kjl method [30]
and Desbrun’s mean curvature flow method [5]. But the
Laplacian-based methods have two main drawbacks:

(i) smoothing side-effects which blur sharp features,
(ii) shrinkage of the shape as a whole.

In order to avoid (i), anisotropic diffusion is discussed by
many researchers [1,3,4,8,35]. The basic mechanism is
the directional smoothing that at the smaller principal cur-
vature value errors are reduced and at the larger value less.
With respect to (ii), Kobbelt et al. [12] applied a surface
fairing in CAGD [9], and proposed a discrete fairing method
by the second order Laplacian in order to prevent from
shrinking in denoising process. But their approach is not
enough for mesh denoising with sharp features. In addi-
tion, we add the following problem to the above two:

(iii) cumbersome setting of tuning parameters.

For example, in the algorithms using a Gaussian weighting
function, the band width becomes an important parameter
for getting better results, but the way how to decide the
value is hardly discussed in detail and treated as a thing
that should be properly set by users suited for the level
of noise.

In this paper, we propose a novel method for the
feature-preserving mesh denoising based on the normal
tensor which is constructed by a sum of covariance matri-
ces of unit facet normal vectors in one-ring neighborhood.
The main idea behind our approach is followed by two
things. At first, we recognize the characteristic features
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via surface normal not via curvature or higher order differ-
ential invariants [14], since they are sensitive to noise and
cannot be directly computed on noisy data. Furthermore,
sharp features cannot be primarily expressed by a differen-
tiable manifold, so we cannot represent them precisely as a
smooth surface. As reported in [2,28], the surface normal
describes the feature saliencies well though it is lower or-
der derivative than curvature. Secondly, in order to prevent
from the shrinking problem, we also use a surface fairing
technique as Kobbelt et al. [12], and apply it to the fea-
ture-preserving mesh denoising, though the existing meth-
ods does not often use it. In general, different from
Laplacian based smoothing, fairing is related to aesthetics
and is often processed with higher order derivative such
as the second order Laplacian. Therefore, by the same rea-
son as stated above, we develop a robust algorithm for
noise to realize the fairing technique.

Our contributions are as follows: by connecting the fea-
ture saliency based on the normal tensor framework,
which is proposed by Medioni et al. [19] and Page et al.
[24], with a distance metric in the normal tensor space,
we have realized the following items:

� a novel algorithm that updates a vertex by the Laplacian
of curvature which minimizes a difference of the curva-
ture in one neighborhood, preserves sharp features
more robustly and clearly for noisy mesh data,
� the proposed method prevents from the shrinkage

problem due to the property of Laplacian of curvature,
� our weighting function is simply designed, and the

denoising algorithm contains only one tuning parame-
ter that defines a crease angle.

The rest of the paper is organized as follows: Section 2
presents a brief overview of related works. The working
principle of normal tensor is explained in Section 3. In Sec-
tion 4, we introduce our method which simultaneously
smoothes the geometric flow and noisy mesh. Results
and some comparison with other schemes are done in Sec-
tion 5 and finally we conclude the paper in Section 6.

Before proceeding to Section 2, we define some nota-
tions used in this paper.
Notations: We treat a triangle mesh denoted by M(V, F),
where V and F indicate mesh vertices V = {Vij
i = 1, 2, . . . , jVj} and triangle facets F = {Fiji = 1, 2, . . . , jFj},
respectively. Here j � j denotes the cardinality of a set. Ver-
tices and facets have each unit normal vector Nv and Nf

respectively. And 1-ring neighborhood of a vertex Vi has
two cases; one is vertex neighbor indices denoted by

KV(i) and the other is facet indices KF(i). @F denotes a set
of edges that constitute a facet boundary. An illustration
is shown in Fig. 2.

2. Related work

The governing equation in mesh denoising where we
focus on as a deterministic framework, is described by
the following diffusion equation:

@uðx; tÞ ¼ divðDðxÞruðx; tÞÞ
uðx;0Þ ¼ f ðxÞ;

�
ð1Þ

where D(x) is diffusion coefficient, u(x, t) is a certain func-
tion such as concentration of a matter and x 2 Rd, t > 0. We
show some mathematical foundations for the functions re-
lated to our proposed approach below.

2.1. Isotropic diffusion

Here we consider d = 1, and D(x) is a constant D0. Eq. (1)
is reduced to @tu(x, t) = D0@xxu(x, t), which results in the
following equation with a simple finite difference scheme:

uðx; t þ DtÞ ¼ uðx; tÞ þ D0dt

ðDxÞ2
X
~x2Kx

ðuð~x; tÞ � uðx; tÞÞ;

where Kx � {x + Dx,x � Dx}.
We apply the above finite difference equation to an

unstructured mesh, that is, replace Kx and u(x,t) with
KV(i) and mesh vertex Vi respectively. Thus we obtain the
following vertex update equation:

Vnþ1
i  Vn

i þ
kX

j2KV ðiÞ
wij

X
j2KV ðiÞ

wijðVn
j � Vn

i Þ; ð2Þ

where k > 0 is the iteration step size, which should be a
small value for stable calculation. Eq. (2) is well known
as Laplacian smoothing, and the weight function wij plays
an important role, since simple functions such as angular-
or area-weight have lost and blurred the feature character-
istics due to a diffusion process. On the other hand, the
counterpart of the Euclidian Laplacian D on a smooth sur-
face is the Laplace–Beltrami operator DM. Thus we obtain a
geometric diffusion equation [27]

@tx ¼ DMx; ð3Þ

where x is a point on the manifold M. From differential
geometry [33], we know that the mean curvature vector
KHn equals the Laplace–Beltrami operator on a surface
manifold:

�KHn ¼ DMx:

Thus the geometric diffusion Eq. (3) is equivalent to the
mean curvature flow (MCF) given by

@tx ¼ �KHn:

In mesh area, Desbrun et al. [5] proposed the MCF
smoothing method using a discrete mean curvature vector
KH

i ni given by cotangent formula:

Fig. 1. Smoothing and denoising a noisy octahedron
(jVj = 1026,jFj = 2048). From left to right, Noisy data, laplacian smoothing
and our denoising.
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