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This paper systematically studies the well-known Mexican hat wavelet (MHW) on
manifold geometry, including its derivation, properties, transforms, and applications. The
MHW is rigorously derived from the heat kernel by taking the negative first-order deriva-
tive with respect to time. As a solution to the heat equation, it has a clear initial condition:
the Laplace-Beltrami operator. Following a popular methodology in mathematics, we
analyze the MHW and its transforms from a Fourier perspective. By formulating Fourier
transforms of bivariate kernels and convolutions, we obtain its explicit expression in the
Fourier domain, which is a scaled differential operator continuously dilated via heat diffu-
sion. The MHW is localized in both space and frequency, which enables space-frequency
analysis of input functions. We defined its continuous and discrete transforms as convolu-
tions of bivariate kernels, and propose a fast method to compute convolutions by Fourier
transform. To broaden its application scope, we apply the MHW to graphics problems of
feature detection and geometry processing.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

One long-lasting task in geometry processing is to
develop functional analysis tools on curved surfaces. With-
out Euclidean metric, it is extremely challenging to explic-
itly define functions on manifolds. Many existing methods
are hinged upon differential geometry, where surface
parameterization is frequently unavoidable. In this work,
we study and develop functional analysis tools in fre-
quency domain via spectral decomposition. Functions that
have no closed-form expression on manifolds may have
explicit formulations in frequency domain. The fundamen-
tal goal of this paper is to articulate this spectral approach
with mathematical rigor, by studying the Mexican hat
wavelet (MHW) and its transforms on manifolds.

Wavelet transforms are important tools for functional
analysis and processing. One way to construct discrete

* Corresponding author. Address: Room 2426, Computer Science
Building, Stony Brook University, Stony Brook, NY 11794-4400, United
States.

E-mail addresses: thou@cs.stonybrook.edu (T. Hou), qin@cs.stonyb
rook.edu (H. Qin).

1524-0703/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.gmod.2012.04.010

wavelets on surfaces is via subdivision. As a regular
domain with refining schemes, subdivision is convenient
for subsampling and filter banks, which iteratively refine
mesh geometry and functions. Subdivision wavelets
heavily rely on subdivision connectivity of the mesh, which
limits the application scope to data compression and level-
of-detail rendering. The regularly-refined hierarchy is,
however, computationally expensive and perhaps hard to
build. Consequently, it gives rise to a strong demand in
flexibly adapted wavelet tools without building the subdi-
vision explicitly, which can be used for fast space-fre-
quency analysis. For data compression, orthogonality is a
crucial property of wavelets, while for space-frequency
analysis, localization in both space and frequency is much
more desirable. This requires wavelets are localized in
space and frequency. It also implies the significance of ana-
lyzing functions in frequency domain.

In this paper, we advocate the well-known MHW on
manifold geometry that is rigorously derived from heat dif-
fusion. Analogous to the Euclidean MHW, the manifold
MHW is defined as the negative first-order derivative of
the heat kernel with respect to time. As a solution to the
heat diffusion partial differential equation (PDE), it takes
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the Laplace-Beltrami operator as the initial condition. By
defining Fourier transforms of bivariate kernels and convo-
lutions, we further reveal that in the Fourier domain, the
MHW is a product of the Laplace-Beltrami operator and
the heat kernel. It is, therefore, a scaled differential opera-
tor continuously dilated through heat diffusion. It has
Gaussian decays in both space and frequency, which im-
plies it can extract information in a space-frequency win-
dow. We discuss some important properties of the MHW,
such as admissibility, convergence, informativeness, and
stableness. Moreover, we define its continuous and dis-
crete transforms as convolutions of bivariate kernels.
Similar with the case in signal processing, we propose a
method to compute convolutions by Fourier transform,
which significantly improves the computational time of
wavelet transforms, without reducing their accuracy.
Applications in feature detection and spectral geometry
processing will immediately follow suit after we reveal
the MHW’s theoretic insights and document its most
important properties. As an analog on manifold geometry,
it is poised to excite more applications. While the central
theme of this paper is studying the MHW and its trans-
forms on manifolds, other contributions can be summa-
rized as follows:

e We study Fourier transforms of bivariate kernels and
convolutions on manifolds, with the purpose for func-
tion design in the Fourier domain.

e We approach the MHW transforms via Fourier decom-
position. We show this Fourier method significantly
reduces the complexity while preserving the accuracy.

e Based on the MHW theory, we formulate inverse trans-
forms of continuous and discrete MHWs, which are con-
cise and fast to compute.

e We devise immediate applications of the MHW in
space-frequency analysis, including feature detection
and spectral geometry processing.

e The proposed mechanism can be extended to other self-
adjoint (differential) operators for functional analysis
on manifolds.

2. Related work

This section briefly reviews previous work of Fourier
transforms and wavelets adapted to manifold geometry.

2.1. Adapted Fourier transforms

Local areas of curved surfaces are homogeneous to 2D
planar patches, where the Euclidean Fourier transform
can be applied for spectral processing [20]. In terms of
adapting the Fourier transform on manifolds, basis func-
tions are critical for orthogonally decomposing the space
to a series of shape spectra. In [2,13], eigenfunctions of
the symmetric Laplacian of the connectivity graph are
adopted as a Fourier basis, which is derived from the mesh
topology but not the geometry. Analogous to the Fourier
basis in Euclidean metric, manifolds have similar orthonor-
mal basis formed by eigenfunctions of the Laplace-Beltrami
operator [15]. Accordingly, Vallet and Lévy [27] defined the
manifold harmonic transform (MHT) that is a fully adapted

manifold Fourier transform, expanded on manifold har-
monics (i.e., Laplace-Beltrami eigenfunctions). For applica-
tions, Rong et al. [22] employed this spectral decomposition
to perform mesh editing on the base domain with low fre-
quencies and reconstruct details with high frequencies. The
Fourier basis, consisting of functions repeatedly oscillating
over the entire domain, does not have localization in space.
Therefore, adapted Fourier transforms only allow global
operations of input functions.

2.2. Adapted wavelets

Defining wavelets on manifolds is never an easy task.
One construction on meshed surfaces is achieved via expli-
cit subdivision, which relies on the subdivision connectivity
of the mesh. In [24], the lifting scheme is introduced for
constructing subdivision wavelets on sphere. Lounsbery
et al. [16] studied multiresolution analysis of wavelets con-
structed on surfaces of arbitrary topological type. In [3],
B-spline wavelets are combined with the lifting scheme
for biorthogonal wavelet construction. To avoid remeshing,
Valette and Prost [26] extended the subdivision wavelet for
triangular meshes using irregular subdivision scheme that
can be directly computed on irregular meshes. On spherical
domains, Haar wavelets [19] are constructed over nested
triangular grids generated by subdivision. Recently, the
spherical Haar wavelet basis was improved to the SOHO
wavelet basis [14] that is both orthogonal and symmetric.
In subdivision wavelets, the dilation of scaling functions
strictly follows the subdivision scheme, which depends on
the meshing. The subdivision wavelets have been fre-
quently used for geometry compression and level-of-detail
data visualization. It requires constructing the subdivision
hierarchy before defining wavelets, which may limit its
application scope. The regularly-refined hierarchy is com-
putationally expensive and perhaps even harder to build.

Other than subdivision, a bottom-up construction of
discrete diffusion wavelets [7] has been proposed on
graphs and manifolds. They use a diffusion operator and
its powers to build the nested subspaces, where scaling
functions and wavelets are obtained by orthogonalization
and rank-revealing compression. However, the constructed
scaling and wavelet functions are not localized. In [18], the
biorthogonal diffusion wavelets are introduced, relieving
the excessively-strict orthogonality property of scaling
functions. Rustamov [23] studied the relation between
mesh editing and diffusion wavelets by introducing the
generalized linear editing. The diffusion wavelets, itera-
tively constructed by matrix powers, are inconvenient for
low-frequency processing.

In recent research results, mathematicians studied gen-
erating wavelets through the use of spectral theory.
Hammond et al. [10] addressed graph wavelets through
spectral graph theory. The graph wavelets are generated
by a wavelet operator expanded on eigenfunctions of the
graph Laplacian. In [1], Antoine et al. also studied continu-
ous wavelet transforms on graphs, constructed by a gener-
ator in spectral domain. As an example, they introduced
the Mexican hat wavelet formulated by the generator
u?e~v* that is the Fourier transform of the Euclidean
MHW. A similar result on compact manifolds was given
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