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a b s t r a c t 

Given two irreducible, algebraic space curves C 1 and C 2 , where C 2 is contained in some plane �, we pro- 

vide algorithms to check whether or not there exist perspective or parallel projections mapping C 1 onto 

C 2 , i.e. to recognize C 2 as the projection of C 1 . In the affirmative case, the algorithms provide the eye 

point(s) of the perspective transformation(s), or the direction(s) of the parallel projection(s). Although 

the problem is mainly discussed for rational curves, an algorithm for implicit curves is also given. The al- 

gorithms presented are mostly symbolic; nevertheless, we include an approximate algorithm for rational 

curves too. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we address the following geometric problem: 

given an irreducible, algebraic space curve C 2 , lying on a plane 

�, and another irreducible, algebraic space curve C 1 , not necessar- 

ily planar, check whether or not there exist perspective or parallel 

projections mapping C 1 onto C 2 , and find them in the affirmative 

case. 

Our problem can be translated into the context of Computer Vi- 

sion. For this purpose, we recall [16] the simplest camera model, 

known as the pinhole camera . In this model, a camera is modeled 

as a pair (a , �) , where a is called the eye point of the camera, 

and � is the image plane : then, given an object � ⊂ R 

3 , the pho- 

tograph of � taken by the camera is the projection of � from the 

point a onto the plane � (see Fig. 1 ). The eye point can be allowed 

to be at infinity, in which case we have a parallel projection from 

a certain direction. 

Therefore, in this context our problem can be translated as 

whether or not C 2 can be regarded as a photograph of C 1 , taken 

with a camera where the image plane is known (it is the plane �

containing C 2 ), but where the eye point is unknown. 

A more general problem is treated in [8] . In [8] the input is a 

pair of algebraic curves, D 1 ⊂ R 

3 and D 2 ⊂ R 

2 , and the question is 

to check if there exists some camera where D 2 is the photograph 
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of D 1 : in other words, to find the positions of the eye point and 

the image plane, if any, such that D 2 is the photograph of D 1 taken 

from the camera eye point. This problem is known as the object- 

image correspondence problem, and amounts to recognizing images 

without any clue on the parameters of the camera used to take the 

photograph. 

In [8] the problem is solved by deciding whether the curve D 2 

is equivalent to some curve in a family of planar curves, computed 

from D 1 , under an action of the projective or the affine group. In 

turn, this is done by using differential invariants. Computationally, 

the question boils down to solving a quantifier elimination prob- 

lem with five variables, in the case of perspective projections, and 

with four variables in the case of parallel projections. Since the dif- 

ferential invariants used in [8] are high-order (5 and 6 for affine 

actions, 7 and 8 for projective actions), the elimination problem 

can be hard. 

In our case we assume that the image plane is known, so our 

problem can be considered as a weak version of the problem in 

[8] . Because the problem is simpler, we can find a solution com- 

putationally simpler than that of [8] , too, especially in the case of 

rational curves. In the rational case, we restrict to rational curves 

properly parametrized over Q , and use a very different approach to 

that in [8] . We observe that any projection between C 1 and C 2 cor- 

responds to a rational function ψ between the parameter spaces; 

furthermore, ψ is shown to be a Möbius transformation in the case 

of non-degenerate projections between C 1 and C 2 , i.e. projections 

which are injective for almost all points of C 2 . We show that the 

rational functions ψ potentially corresponding to projections from 

eye points with rational coordinates, can be efficiently computed 

by means of standard bivariate factoring techniques over the ra- 

tionals. In order to also find the projections from non-rational eye 
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Fig. 1. Pinhole camera model. 

points we need bivariate factoring over the reals, i.e. an absolute 

factorization. Furthermore, once ψ is computed, checking if it gives 

rise to some projection between C 1 and C 2 is easy. 

As an alternative to computing an absolute factorization, also in 

the rational case, we provide another algorithm, both in symbolic 

and approximate versions, which takes advantage of the existence 

of ψ without actually computing it. In general, the symbolic ver- 

sion of this last algorithm requires to compute the primitive ele- 

ment of an algebraic extension Q (α, β) , which can be costly. How- 

ever, the approximate version of the algorithm, where algebraic 

numbers are numerically approximated, is fast. In this last case, 

we do not check if C 2 is the projection of C 1 , but if C 2 is “approx- 

imately” the projection of C 1 . Furthermore, this approximate algo- 

rithm is well-suited for curves whose defining parametrizations are 

known only up to a certain precision, i.e. with floating point coef- 

ficients, which is closer to applications. 

In the case of implicit curves, we also present a symbolic al- 

gorithm for solving the problem. In this case the algorithm uses 

Gröbner bases, and is only suitable for low degree curves. For 

higher degrees, the Gröbner elimination process can be costly. 

2. Generalities on projective and parallel projections. 

Throughout the paper, we consider two irreducible, algebraic 

space curves C 1 , C 2 ⊂ R 

3 , C 1 � = C 2 . We will suppose that C 2 is con- 

tained in some plane �; however, C 1 is not necessarily planar. 

We first address the case when C 1 and C 2 are rational, i.e. 

parametrized by rational maps 

x j : R ��� C j ⊂ R 

3 , x j (t) = 

(
x j (t) , y j (t) , z j (t) 

)
, j = 1 , 2 . (1) 

Here, we will exclude the case when C 1 , C 2 are two planar curves 

contained in the same plane. Additionally, we will suppose that x 1 , 

x 2 have coefficients in Q . The components x j , y j , z j of x j are real, 

rational functions of t , therefore defined for all but a finite num- 

ber of values of t . Nevertheless, at certain moments we will con- 

sider x j , y j , z j as functions from C to C . We will assume that the 

parametrizations in (1) are proper , i.e., birational or, equivalently, 

injective except for perhaps finitely many values of t . This can be 

assumed without loss of generality, since any rational curve can 

be properly reparametrized. For these claims and other results on 

properness, the interested reader can consult [24] for plane curves 

and [1, §3.1] for space curves. 

Perspective and parallel projections onto a plane � are well- 

known transformations in 3-space, illustrated in Fig 2 . Perspec- 

tive projections onto � are projections from a point, called the 

eye point , while parallel projections are projections in the direc- 

tion of a nonzero vector v ∈ R 

3 . Both types of projections can be 
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Fig. 2. Perspective projection (left), parallel projection (right). 

unified when we move to a projective setting. In (complex) pro- 

jective space P 

3 
C 
, the projective closure of C j is the curve in P 

3 
C 

whose affine part is C j . If C j is rational, the projective closure can 

be parametrized as 

˜ x (t) = 

[
˜ x j (t) : ˜ y j (t) : ˜ z j (t) : ˜ ω j (t) 

]
, 

where x j (t) = 

˜ x j (t) 

˜ ω j (t) 
, y j (t) = 

˜ y j (t) 

˜ ω j (t) 
, z j (t) = 

˜ z j (t) 

˜ ω j (t) 
. For simplicity we 

will use the same notation for a curve and its projective closure; it 

will be clear from the context whether we are working with one 

or the other. 

In projective space, parallel or perspective projections are 

treated in the same way: in the case of perspective projections the 

eye point is affine, and in the case of parallel projections, the eye 

point is at infinity. So both projections [13, §13] can be represented 

by a projective transformation ⎡ 

⎢ ⎣ 

x ′ 
y ′ 
z ′ 
ω 

′ 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

p 11 p 12 p 13 p 14 

p 21 p 22 p 23 p 24 

p 31 p 32 p 33 p 34 

p 41 p 42 p 43 p 44 

⎤ 

⎥ ⎦ 

︸ ︷︷ ︸ 
P 

·

⎡ 

⎢ ⎣ 

x 
y 
z 
ω 

⎤ 

⎥ ⎦ 

. 

If ˜ a := [ ̃  a 1 : ˜ a 2 : ˜ a 3 : ˜ a 4 ] denotes the eye point of the projection, and 

the implicit equation of the projection plane � is Ax + By + Cz + 

D = 0 , an easy computation shows that the matrix P is 

P = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

− ˜ a 2 B − ˜ a 3 C − ˜ a 4 D 

˜ a 1 B 

˜ a 1 C ˜ a 1 D 

˜ a 2 A − ˜ a 1 A − ˜ a 3 C − ˜ a 4 D 

˜ a 2 C ˜ a 2 D 

˜ a 3 A 

˜ a 3 B − ˜ a 1 A − ˜ a 2 B − ˜ a 4 D 

˜ a 3 D 

˜ a 4 A 

˜ a 4 B 

˜ a 4 C − ˜ a 1 A − ˜ a 2 B − ˜ a 3 C 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (2) 

In the paper we will work with real projections and real curves 

C 1 , C 2 , so that the eye point, and therefore the matrix P , are real. 

Given a projection P ˜ a onto a plane � and a curve C, the projec- 

tion of C, P ˜ a (C) , is the image of C under P ˜ a . Therefore, our goal is 

to check if C 2 is the projection of C 1 from some eye point ˜ a onto the 

plane � containing C 2 , i.e. if there exists ˜ a such that C 2 = P ˜ a (C 1 ) , 
and find ˜ a in the affirmative case . Notice that the solution is not 

necessarily unique. For instance, let C 1 be { x 2 + y 2 = 1 , z = 1 } and 

let C 2 be { x 2 + y 2 = 2 , z = 0 } (see Fig. 3 ). These curves are two 

circles of radii 1 and 

√ 

2 , located in the planes z = 1 and z = 0 , 

with centers on the z -axis. In this case there are two different per- 

spective projections transforming C 1 into C 2 , one from the point (
0 , 0 , 

√ 
2 √ 

2 −1 

)
, and another one from the point 

(
0 , 0 , 

√ 
2 √ 

2 +1 

)
. This example 

also shows that two rational curves C 1 and C 2 parametrized over 

Q can however be related by a projection from a point with non- 

rational coordinates. 

If P ˜ a | C 1 is injective for almost all points of C 1 , so there are 

not two different branches of C 1 whose projection onto C 2 over- 

lap, we will say that P ˜ a is non-degenerate ; otherwise, we will say 
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