
Direct repair of self-intersecting meshes q

Marco Attene ⇑
Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova, Italy

a r t i c l e i n f o

Article history:
Received 11 June 2014
Received in revised form 19 August 2014
Accepted 15 September 2014
Available online 30 September 2014

Keywords:
Outer hull
Mesh repairing
Self-intersection

a b s t r a c t

A fast and exact algorithm to eliminate intersections from arbitrary triangle meshes is pre-
sented, without any strict requirement on the input. Differently from most recent
approaches, our method does not rely on any intermediate representation of the solid.
Conversely, we directly cut and stitch mesh parts along the intersections, which allows
to easily inherit possible surface attributes such as colors and textures. We rely on standard
floating point arithmetics whenever possible, while switching to exact arithmetics only
when the available fixed precision is insufficient to guarantee the topological correctness
of the result. Our experiments show that the number of these switches is extremely low
in practice, and this makes our algorithm outperform all the state-of-the-art methods that
provide a guarantee of success. We show how our method can be exploited to quickly
extract the so-called outer hull even if the resulting model is non manifold by design and
the single parts have boundaries, as long as the outer hull itself is unambiguously
definable.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern 3D modeling paradigms enable extremely flexi-
ble tools to design original shapes by composition and
deformation of existing models [17,4]. Unfortunately, most
of the times the designer has not a deep knowledge of the
underlying mathematics and simply produces an original
shape by cutting, bending and moving parts of 3D objects
in space (e.g. Fig. 1(left)). The designer’s work terminates
when the object looks as expected, but in most cases the
so-constructed model has a number of self-intersections
that make it unusable in important applications such as,
e.g., 3D printing [13,37]. Furthermore, besides self-intersec-
tions, such compound models often contain other flaws such
as open boundaries, degenerate elements and singularities
that complicate the necessary repairing task. As observed

in [3], each repairing algorithm has its own requirements
on the input, and these requirements are not always met
in practice. In particular, current solutions to convert self-
intersecting meshes to valid polyhedra are either too slow
and memory-intensive, or too restrictive in terms of both
supported input and potential output (see Section 5.1.6 in
[3]). As an example of supported input restriction, one
may consider that many algorithms assume that the input
has a manifold connectivity and has no surface holes. In
most cases, these same algorithms can only produce mani-
fold results, which means that a nonmanifold union of two
manifold solids cannot be constructed. Tools to fill holes
and convert a generic input to a combinatorial manifold
exist [19], but in some cases performing such a preprocess-
ing may become quite complicated, while in some other
cases (e.g. when non-manifold configurations are designed
on purpose [1]) such a conversion cannot be realized at all
without corrupting the original design intent.

Herewith we present a fast and exact algorithm to elim-
inate intersections from arbitrary triangle meshes, without
any strict requirement on the input. Also, we show how

http://dx.doi.org/10.1016/j.gmod.2014.09.002
1524-0703/� 2014 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by Tao Ju and Peter
Lindstrom.
⇑ Fax: +39 0106475660.

E-mail address: marco.attene@ge.imati.cnr.it

Graphical Models 76 (2014) 658–668

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier .com/locate /gmod

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2014.09.002&domain=pdf
http://dx.doi.org/10.1016/j.gmod.2014.09.002
mailto:marco.attene@ge.imati.cnr.it
http://dx.doi.org/10.1016/j.gmod.2014.09.002
http://www.sciencedirect.com/science/journal/15240703
http://www.elsevier.com/locate/gmod


our method can be exploited to extract the so-called outer
hull even if the resulting model is non manifold by design
and the single parts have boundaries. We argue that when
a designer says that ‘‘the object looks as expected’’ he/she
does not care of non-visible parts. Thus, our outer hull
extraction can be considered as an effective repairing that
does not introduce any visible shape distortion. Though
some state-of-the-art methods could be exploited to
resolve this problem, our algorithm represents the cur-
rently fastest solution thanks to a novel mixed use of finite
precision and exact arithmetics.

2. State of the art

A mesh repairing algorithm can be based on either a local
or a global approach [24,3]: in the former case, local opera-
tions are performed around each defect to correct it,
whereas the remaining intact parts of the mesh are kept
unaltered. Conversely, in the latter case the mesh is com-
pletely rebuilt starting from an intermediate representa-
tion. Thus, highly-detailed, feature-rich meshes with
mainly isolated flaws should be fixed using local approaches
to preserve as many details as possible, while highly cor-
rupted or inconsistent meshes with multiple types of
defects (e.g. polygon soups) would better be fixed through
a global approach, especially if one needs a guarantee that
the repair process succeeds. Global approaches typically
are highly robust whereas local approaches are less invasive.
A few approaches exist that try to couple guarantee of suc-
cess and minimal invasiveness [28,29], but they cannot treat
self-intersecting meshes. On the other hand, local algo-
rithms that fix self-intersecting meshes exist, but they can-
not treat a generically flawed input. The state of the art in
self-intersection repairing can be subdivided in fragile,
approximate and robust methods.

2.1. Fragile algorithms

Earliest approaches to calculate and remove mesh inter-
sections were designed to compute boolean operations
[25], and the fact that robustness issues may easily arise
was already known [21]. Instead of handling all the possi-
ble particular cases, in [33] BSP trees are used as an inter-

mediate representation, and an improved version of this
approach has been proposed by [27]. However, instead of
solving the robustness problem, algorithms of this kind
can just detect too difficult situations and report a generic
failure. Surprisingly, such a ‘‘fragile’’ approach is quite dif-
fused in current commercial systems (e.g. Autodesk Maya
[6] and 3ds Max [5]), and when the algorithm fails the user
is simply allowed to undo the operation and tweak the
model before retrying.

2.2. Approximate methods

Instead of trying to compute an exact solution using a
fragile approach, another class of methods achieves robust-
ness at the cost of providing an approximated solution. As
observed in [9], tessellated CAD models produced by
designers are typically made of many surface patches that
should perfectly adhere along their boundaries. Due to
diverse sources of approximation, however, these adja-
cency lines are often replaced by gaps or self-intersections.
The solution proposed in [9,35] is to rebuild the mesh in a
neighborhood of these defects through a local reconstruc-
tion. Clearly, this approach is less invasive than a global
remeshing such as in [23], but the result provided is an
approximation in any case. Furthermore, in [9] each single
patch in the input is required to be free of self-intersec-
tions. A more general method is presented in [10], where
an octree is used to completely resample the input, so that
the result is guaranteed to be the boundary of a solid object
which stays within a user-prescribed distance from the ori-
ginal mesh. When the input is a high resolution raw digi-
tized mesh, self-intersections can be removed using [2]
even if the mesh has degenerate facets, surface holes and
singularities. Though being extremely robust and editing
the mesh only locally, this method and all the others dis-
cussed in this subsection cannot produce exact solutions
(i.e. exact outer hulls).

2.3. Robust and exact methods

The easiest way to implement algorithms which are both
robust and exact is to rely on exact arithmetics or similar
techniques. Exact geometric predicates may be used by

Fig. 1. A typical example of compound model made by juxtaposition of simpler parts (left). Although the external aspect may be satisfactory for a designer,
such a model is not suitable for many applications. Our algorithm can effectively convert such a collection of intersecting parts, along with possible
attributes (e.g. colors and textures), into a valid model that can be exploited in a much larger set of scenarios (right, triangles are consistently connected to
form a single surface). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Attene / Graphical Models 76 (2014) 658–668 659



Download English Version:

https://daneshyari.com/en/article/442360

Download Persian Version:

https://daneshyari.com/article/442360

Daneshyari.com

https://daneshyari.com/en/article/442360
https://daneshyari.com/article/442360
https://daneshyari.com

