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a b s t r a c t

In this paper, we present a structure-aligned approach for surface parameterization using
eigenfunctions from the Laplace–Beltrami operator. Several methods are designed to com-
bine multiple eigenfunctions using isocontours or characteristic values of the eigenfunc-
tions. The combined gradient information of eigenfunctions is then used as a guidance
for the cross field construction. Finally, a global parameterization is computed on the sur-
face, with an anisotropy enabled by adapting the cross field to non-uniform parametric line
spacings. By combining the gradient information from different eigenfunctions, the gener-
ated parametric lines are automatically aligned with the structural features at various
scales, and they are insensitive to local detailed features on the surface when low-mode
eigenfunctions are used.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Surface parameterization is of great importance for
many applications, such as quadrilateral meshing [1], tex-
ture mapping and synthesis [2,3]. An important issue for
surface parameterization is how to align parametric lines
with the feature directions. Some simplification techniques
[4–6] were developed to generate very coarse domain
meshes with a good user control. Although feature align-
ment was achieved in a certain degree [4], it is difficult
to control the simplification process to preserve surface
features. Using the harmonic field [7,8], features can be
captured, but feature alignment is limited due to the diffi-
culty in generating the field and placing singularities. In
recent years, methods based on the cross field have been
introduced [7,9–12]. Generally, the captured features in

the cross field are represented by the principal curvatures,
which are sensitive to the local detailed features and may
fail in capturing structural features of an object at desired
scales.

Eigenfunctions of the Laplace–Beltrami operator (LBO)
are well-known for their property of capturing the shape
behavior and structural feature of an object [13–16]. Eigen-
functions with respect to different eigenvalues reflect
structural features at different scales, which has been uti-
lized in surface segmentation and reconstruction [14,17].
The eigenfunctions vary along the object surface and are
invariant to different poses, which makes them ideal for
describing the structural feature of the object. A variety of
applications have been introduced taking the advantages
of eigenfunctions, such as pose-invariant Reeb graph [16],
shape matching [13] or registration [18], and the Shape-
DNA [15]. Another important application of eigenfunctions
is surface quadrangulation or parameterization [19]. For
example, the Morse-Smale complexes [20–22] were built
by connecting the saddle and extrema of eigenfunctions,
dividing the surface into several coarse quadrilateral
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patches. Despite of these developments, feature alignment
is still a challenging problem in surface parameterization.

In this paper, we introduce a novel method to define a
guidance for cross field generation using eigenfunctions,
and generate a structure-aligned parameterization for the
input triangle mesh. A guidance is first constructed using
the gradient of multiple eigenfunctions of the LBO to cap-
ture the structural feature at various scales. Then a smooth
cross field is built following the guidance, based on which a
surface parameterization is computed. The main contribu-
tions of our work include:

1. A novel structure-aligned approach is developed for
surface parameterization using eigenfunctions,
which is insensitive to local detailed surface features.

2. Multiscale structural features are captured using the
gradient of multiple eigenfunctions as a guidance
for cross field generation.

3. A new algorithm is introduced to enable anisotropy
in the parameterization by adapting the cross field
to non-uniform parametric line spacings.

The remainder of the paper is organized as follows.
Section 2 describes eigenfunctions. Section 3 explains
how to define the guidance for cross field construction
using the gradient of multiple eigenfunctions. Section 4
discusses cross field construction and surface parameteri-
zation. Section 5 shows some results. Finally, Section 6
draws conclusions and points out future work.

2. Eigenfunctions

Given a G2 smooth surface S, the eigenproblem of LBO
is to find the eigenvalues k and their corresponding
eigenfunctions f defined on it, such that

�DSf ¼ kf ; ð1Þ

where DS is the LBO defined on surface S. Since �DS is a
self-adjoint and semi-positive definite operator, the eigen-
values of �DS are real and nonnegative. Eigenfunctions of
the LBO provide a set of convenient basis to describe the
shape behavior or structural feature of an object. Let M
be a triangulation of surface S; fxgn

i¼1 be the vertex set of
M. A class of discretization scheme [23–25] for the LBO
can be represented as

DSf ðxiÞ �
X

j2NðiÞ
wijf ðxjÞ; wij 2 R; ð2Þ

where NðiÞ contains the 1-ring neighborhood of xi, and wij

are the weights defined in different discretizations of the
LBO. The eigenproblem becomes

�
X

j2NðiÞ
wijf ðxjÞ ¼ kf ðxiÞ; ð3Þ

or in matrix form,

�WF ¼ kF; ð4Þ

where F ¼ f ðx1Þ; . . . ; f ðxnÞ½ �T and W is the coefficient matrix
defined by wij. Eq. (4) yields n modes, each corresponds to
an eigenvalue and eigenfunction. Let kk and Fk ðk ¼ 0;1;

. . . ;n� 1Þ be the kth eigenvalue and the corresponding
eigenfunction, we have

0 ¼ k0 6 k1 6 k2 6 � � � 6 kn�1: ð5Þ

k0 ¼ 0 represents a rigid-body mode, its eigenfunction F0 is
a constant-scalar field.

Various methods have been developed for the discreti-
zation of LBO. In this paper, we use the cotangent scheme
[13,26–29]. This discretization provides a symmetric
matrix, which makes all the resulting eigenvalues and
eigenfunctions real. However, the cotangent scheme was
proved to be not convergent for irregular nodes, and it
cannot deal with non-uniform meshes well [25]. There
are some research conducted on convergent discretization
of the LBO. For example, a k-nearest neighbor of a vertex
was considered using a truncated heat kernel [30]. In
[25], the Laplace matrix was constructed based on a
quadratic fitting and its convergence rate was proved to
be linear [31]. This discretization provides a non-symmetric
matrix, resulting in complex eigenvalues and eigenfunc-
tions. In this paper we use the cotangent scheme LBO to
obtain real eigenfunctions.

3. Guidance estimation using eigenfunctions

Different eigenfunctions reflect surface features at dif-
ferent scales [14]. Compared with the high-mode eigen-
functions used in [20–22], the low-mode eigenfunctions
are less sensitive to the detailed surface features and cap-
ture the major structure of the object. In this paper, we will
use multiple low-mode eigenfunctions to design a direc-
tion guidance and then build a cross field, from which we
can obtain a structure-aligned surface parameterization.

The gradient of the eigenfunctions can be used to repre-
sent structural features. For example in the Hand model in
Fig. 1, the gradient of the first and second eigenfunctions
(black arrows) reflects the slim cylindrical structure of
the fingers. However, a single eigenfunction may only
reflect features in certain regions well. For example in
(b), the gradient of Mode 1 eigenfunction follows the mid-
dle finger and the thumb very well, but not the little finger
because the gradient magnitude is very small on it. Simi-
larly in (c), the gradient of Mode 2 eigenfunction follows
the index, third and little fingers well but not the thumb.
From Fig. 1, we can observe that each eigenfunction plays
a dominant role in certain regions, where the gradient of
this eigenfunction reflects the structural features at a cer-
tain scale. We call such region a feature region of that
eigenfunction. By combining the gradient in the feature
regions from multiple eigenfunctions, we can build a struc-
ture-aligned guidance for the cross field construction. For
example, we can define the middle finger and the thumb
as the feature region of Mode 1 and the index, third and lit-
tle finger as the feature region of Mode 2. Then the slim
cylindrical structure of all five fingers can be captured
using these two modes.

Then, the next problem is how to represent the feature
region for each eigenfunction. Here, we design two differ-
ent ways to represent the feature regions: isocontours
and characteristic values.
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