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a b s t r a c t

Smooth surface approximation is an important problem in many applications. We consider

an implicit surface description which has many well known properties, such as being well

suited to perform collision detection. We describe a method to smooth a triangle mesh by

constructing an implicit convolution-based surface. Both the convolution kernel and the im-

plicitization of the mesh are linearized. We employ the straight skeleton to linearize the latter.

The resulting implicit function is globally C2 continuous, even for non-surface points, and can

be explicitly analytically evaluated. This allows the function to be used in simulation systems

requiring C2 continuity, for which we give an example from industrial simulation, in contrast

to methods which only locally smooth the surface itself.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In many applications smooth surface approximation of

triangular networks is an important problem. Variational de-

sign [16] is a standard technique to solve these kinds of

problems. Usually B-spline surfaces are targeted. Well known

methods dealing with explicit surface representations, such

as corner cutting, lead to B-spline patches or more generally

subdivision surfaces [11]. Other methods employ fairing of

the meshes while still keeping a mesh structure [13]. Another

possible way to represent surfaces is as implicit functions.

Implicit surfaces have proven to be a powerful tool in surface

design [9,26,29]. When the surfaces represent the boundaries

of solids, it is often important to efficiently determine the

inside and outside of the solids. This can easily be achieved

with implicit surfaces using a sign check [25].

Our goal is to get a smooth approximation of the polyg-

onal mesh while still being able to control the original
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mesh interpolating surface. Therefore we introduce a fea-

ture size parameter that controls the smoothing effect. An-

other constraint on our implicit representation, motivated

by the application presented in Section 7, is being able to

compute gradients and second derivatives and to perform

collision detections (inside/outside checks) for non-surface

points.

We certainly could create smooth surfaces with rather

good approximation quality using subdivision surfaces, but

as we aim to use an implicit surface description, a global im-

plicitization would require an expensive computation. The

smoothing effect would also be local and would affect only

a small neighborhood of the surface (cf. [21] Section 2.3).

The main contribution of this paper therefore is present-

ing a convolution-based implicit surface definition for trian-

gle meshes, whose underlying distance function is globally

smooth even on non-surface points. We employ lineariza-

tions that allow the function to be computed analytically. The

linear kernel used is not novel, but to our knowledge its use

in this context is. Notable prior work are Bloomenthal’s con-

volution surfaces [8] and Colburn’s smoothing method [12].

Differences to our approach are detailed below.

Whenever it aids visualization or discussion, figures show

the equivalent 2-d representation of our method. Fully 3-d
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Fig. 1. A solid with sharp edges (left), its signed minimum distance field (middle), and our smoothed distance field (right).

Fig. 2. Convolution with skeleton (top) and solid (bottom).

images are given where necessary, see also Section 6. We also

concentrate on triangle meshes only, since polygon meshes

can be converted to triangle meshes easily. Fig. 1 shows the

result of our method applied to a solid in 2-d. While the

signed minimum distance function has cusps where it is not

differentiable, our smoothed distance field is C2 everywhere.

This cannot be achieved by only smoothing out the solid’s

edges and then computing the signed minimum distance, as

this would still lead to cusps not lying on the surface.

This paper is structured as follows: in Section 2 we give a

brief survey of implicit functions and describe a convolution-

based smoothing approach. Our choice for a linearized ker-

nel is described in detail in Section 3. In Section 4 we give

a brief survey of the straight skeleton as described by Aich-

holzer et al. and use it to give an implicit surface definition.

We discuss the approximation quality of the resulting surface

in Section 5, give results of smoothed surfaces in Section 6,

and present an application in Section 7.

2. Implicit surfaces

Implicit functions are widely used tools to describe sur-

faces and solids in geometric modeling. In the most general

form, an implicit surface is the iso-surface of a potential field

F for an iso-value T:

F(x) − T = 0. (1)

Solids can be described as the interior of an implicit surface,

i.e. all points x for which F(x) − T ≤ 0. CSG operations, such

as union and intersection of different solids, can then be im-

plemented easily as min and max operations.

Convolution surfaces, as first described by Bloomenthal

and Shoemake [8], are implicit surfaces based on skeleton

primitives like lines and triangles. The resulting surfaces are

a smooth blend of iso-potentials around the primitives, but

do not approximate the original mesh in the way we intend.

The convolution integrals for these surfaces are mostly com-

puted by a numerical scheme. A different approach is Col-

burn’s method [12], who does corner smoothing by a nu-

merical convolution of a solid’s characteristic function with

a Gaussian function. Our method employs a linearization of

the convolution kernel as well as an implicit description of

the triangle-manifold. This allows us to exactly evaluate the

implicit function without reverting to numerical methods, in

contrast to the numerical integration needed for Colburn’s

approach.

Bloomenthal and Shoemake describe convolution sur-

faces as an extension of Blinn’s blobby model [7] for im-

plicit surface design. They employ a convolution of a filter

kernel over a skeleton to create a surface. The resulting sur-

faces resemble the skeleton, but surround it instead of ap-

proximating it. Fig. 2 schematically illustrates the conceptual

difference between convolution surfaces on the one hand

and the surfaces created by Colburn’s method and ours on

the other hand. Bloomenthal’s convolution surfaces integrate

over skeletons only, whereas we integrate over the complete

domain of the implicit function. While both methods nicely

round the corners of the square, convolution surfaces create

an exterior and interior surface offsetted from the original

skeleton. The innermost area has the same sign as the outside

area. Thus, in our scenario convolution surfaces cannot sim-

ply be applied to a solid’s boundary, because, without further

computation, they do not lead to a signed distance function

to discriminate inside and outside.

To apply a convolution-based smoothing, we first have

to convert the explicitly given triangle mesh to an implicit
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