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a b s t r a c t

Based on the computation of a superset of the implicit support, implicitization of a paramet-

rically given hypersurface is reduced to computing the nullspace of a numeric matrix. Our

approach predicts the Newton polytope of the implicit equation by exploiting the sparseness

of the given parametric equations and of the implicit polynomial, without being affected by

the presence of any base points. In this work, we study how this interpolation matrix ex-

presses the implicit equation as a matrix determinant, which is useful for certain operations

such as ray shooting, and how it can be used to reduce some key geometric predicates on the

hypersurface, namely membership and sidedness for given query points, to simple numerical

operations on the matrix, without need to develop the implicit equation. We illustrate our

results with examples based on our Maple implementation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental question in changing representation of

geometric objects is implicitization, namely the process

of changing the representation of a geometric object from

parametric to implicit. It is a fundamental operation with

several applications in computer-aided geometric design

(CAGD) and geometric modeling. There have been numer-

ous approaches for implicitization, including resultants,

Gröbner bases, moving lines and surfaces, and interpolation

techniques.

In this work, we restrict attention to hypersurfaces and

exploit a matrix representation of hypersurfaces in order to

perform certain critical operations efficiently, without devel-

oping the actual implicit equation. Our approach is based

on potentially interpolating the unknown coefficients of the

implicit polynomial, but our algorithms shall avoid actually

computing these coefficients. The basis of this approach is a

sparse interpolation matrix, sparse in the sense that it is con-

structed when one is given a superset of the implicit polyno-

mial’s monomials. The latter is computed by means of sparse
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resultant theory, so as to exploit the input and output sparse-

ness, in other words, the structure of the parametric equa-

tions as well as the implicit polynomial.

The notion that formalizes sparseness is the support of a

polynomial and its Newton polytope. Consider a polynomial

f with real coefficients in n variables t1, . . . , tn, denoted by

f =
∑

a

cata ∈ R[t1, . . . , tn], a ∈ N
n, ca ∈ R,

where ta = ta1

1
. . . tan

n .

The support of f is the set {a ∈ N
n : ca �= 0}; its Newton poly-

tope N( f ) ⊂ R
n is the convex hull of its support. All concepts

extend to the case of Laurent polynomials, i.e. with integer

exponent vectors a ∈ Z
n.

The main ingredient of our method is the Newton

polytope of the implicit equation, or implicit polytope and

the set of lattice points it contains, which we call implicit

support. The vertices of the implicit polytope are called

implicit vertices. The implicit polytope is computed from

the Newton polytope of the sparse (or toric) resultant, or

resultant polytope, of auxiliary polynomials defined by the

parametric equations. Under certain genericity assumptions,

the implicit polytope coincides with a projection of the

resultant polytope, see Section 3. In general, a translate of

http://dx.doi.org/10.1016/j.gmod.2015.06.007

1524-0703/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.gmod.2015.06.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2015.06.007&domain=pdf
mailto:ckonaxis@di.uoa.gr
http://dx.doi.org/10.1016/j.gmod.2015.06.007


100 I.Z. Emiris et al. / Graphical Models 82 (2015) 99–109

the implicit polytope is contained in the projected resultant

polytope, in other words, a superset of the implicit support

is given by the lattice points contained in the projected

resultant polytope, modulo the translation. A superset of the

implicit support can also be obtained by other methods, see

Section 2; the rest of our approach does not depend on the

method used to compute this support.

The predicted support is used to build a numerical ma-

trix whose kernel is, ideally, 1-dimensional thus yielding (up

to a nonzero scalar multiple) the coefficients corresponding

to the predicted implicit support. This is a standard case of

sparse interpolation of the polynomial from its values. When

dealing with hypersurfaces of high dimension, or when the

support contains a large number of lattice points, then ex-

act solving is expensive. Since the kernel can be computed

numerically, our approach also yields an approximate sparse

implicitization method.

Our method of sparse implicitization was developed

in [12,13], see Section 2. It handles hypersurfaces given

parametrically by polynomial, rational, or trigonometric

parameterizations and, furthermore, automatically han-

dles the case of base points. The standard version of the

method requires to compute the monomial expansion of

the implicit equation. However, it would be preferable if

various operations and predicates on the hypersurface could

be completed by using the matrix without developing the

implicit polynomial. This is an area of strong current interest,

since expanding, storing and manipulating the implicit

equation can be very expensive, whereas the matrix offers

compact storage and fast, linear algebra computations. This

is precisely the premise of this work.

The main contribution of this work is to show that the

matrix representation can be very useful when based on

sparse interpolation matrices. First, from the interpolation

matrix we construct a matrix which is numeric except for

its last row. When this matrix is non-singular, its determi-

nant equals the implicit equation (up to a constant multiple).

This allows us to use the (nonzero) sign of the determinant of

the numeric matrix obtained by evaluating its symbolic last

row, to decide sidedness for query points q that do not lie

on the hypersurface p(x) = 0. Second, we use the interpola-

tion matrix, independently of its rank, to reduce the mem-

bership test p(q) = 0, for a query point q and a hypersur-

face defined implicitly by p(x) = 0, to rank tests on numeric

matrices.

Moreover, we implement an alternative interpolation ma-

trix using the linear relations between the implicit and para-

metric expressions of the normal to the curve or surface

at any given point, see e.g., [4]. This method is also known

as Hermite interpolation. The new matrix is not of smaller

size, but the number of sample points is reduced. With

curves/surfaces, our method requires about half/one third of

the sample points, respectively. The matrices again can be

used to numerically evaluate membership and sidedness.

Our methods work either with parameterized objects or

with objects given by a point cloud along with normals at

the points. When the parametric equations are not known,

support prediction is not possible hence we use bounds

on the implicit degree or try successively larger simplices.

Our algorithms have been implemented in Maple. To em-

phasize algorithms and practical results we detail code and

experiments; for readability we omit proofs of the state-

ments. All omitted proofs can be found in [11].

The paper is organized as follows: Section 2 overviews

previous work. Section 3 describes our approach to pre-

dicting the implicit support while exploiting sparseness,

presents our implicitization algorithm based on computing

a matrix kernel and focuses on the case of high dimensional

kernels. In Section 4 we formulate membership and sided-

ness tests as numerical linear algebra operations on the in-

terpolation matrix. Our Maple implementation is described

in Section 5 along with some examples. We conclude with

further work and open questions.

2. Previous work

This section overviews existing work.

If S is a superset of the implicit support, then the most di-

rect method to reduce implicitization to linear algebra is to

construct a |S| × |S| matrix M, indexed by monomials with

exponents in S (columns) and |S| different values (rows) at

which all monomials get evaluated. Then the vector of co-

efficients of the implicit equation is in the kernel of M. This

idea was used in [12,19,24]; it is also the starting point of this

paper.

An interpolation approach was based on integrating ma-

trix M = SS�, over each parameter t1, . . . , tn [6]. Then the vec-

tor of implicit coefficients is in the kernel of M. In fact, the

authors propose to consider successively larger supports in

order to capture sparseness. This method covers polynomial,

rational, and trigonometric parameterizations, but the ma-

trix entries take big values (e.g. up to 1028), so it is difficult to

control its numeric corank, i.e. the dimension of its nullspace.

Thus, the accuracy of the approximate implicit polynomial

is unsatisfactory. When it is computed over floating-point

numbers, the implicit polynomial does not necessarily have

integer coefficients. They discuss post-processing to yield

integer relations among the coefficients, but only in small

examples.

Our method of sparse implicitization was introduced in

[12], where the overall algorithm was presented together

with some results on its preliminary implementation, includ-

ing the case of approximate sparse implicitization. The em-

phasis of that work was on sampling and oversampling the

parametric object so as to create a numerically stable matrix,

and examined evaluating the monomials at random integers,

random complex numbers of modulus 1, and complex roots

of unity. That paper also proposed ways to obtain a smaller

implicit polytope by downscaling the original polytope when

the corresponding kernel dimension was higher than one.

One issue was that the kernel of the matrix might be of

high dimension, in which case the equation obtained may be

a multiple of the implicit equation. In [13] this problem was

addressed by describing the predicted polytope and showing

that, if the kernel is not 1 dimensional, then the predicted

polytope is the Minkowski sum of the implicit polytope and

an extraneous polytope. The true implicit polynomial can be

obtained by taking the greatest common divisor (GCD) of the

polynomials corresponding to at least two and at most all of

the kernel vectors, or via multivariate polynomial factoring.

Our implicitization method is based on the computation

of the implicit polytope, given the Newton polytopes of the
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