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a b s t r a c t

Local curvature characterizes every point of a surface and measures its deviation from a plane,

locally. One application of local curvature measures within the field of image and geometry

processing is object segmentation. Here, we present and evaluate a novel algorithm based on

the fundamental forms to calculate the curvature on surfaces of objects discretized with re-

spect to a regular three-dimensional grid. Thus, our new algorithm is applicable to voxel data,

which are created e.g. from computed tomography (CT). Existing algorithms for binary data

used the Gauss map, rather than fundamental forms. For the calculation of the fundamental

forms, derivatives of a surface in tangent directions in every point of the surface have to be

computed. Since the surfaces exist on grids with restricted resolution, these derivatives have

to be discretized. In the presented method, this is realized by projecting the tangent plane

onto the discrete object surface. The most important parameter of the proposed algorithm is

the size of the chosen window for the calculation of the gradient. The size of this window

has to be selected according to object size as well as with respect to distances between ob-

jects. In our experiments, an algorithm based on the Gauss map provided inconsistent values

for simple test objects, whereas our method provides consistent values. We report quanti-

tative results on various test geometries, compare our method to two algorithms working

on gray value data and demonstrate the practical applicability of our novel algorithm to CT-

reconstructions of Greenlandic firn.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and related work

Curvature is one of the fundamental properties of any

geometric object. While different definitions exist, the term

curvature in three dimensional space always describes the

degree to which a surface deviates from a plane. For voxel

data, algorithms for the computation of integral curvature

measures, i.e., measures which characterize the entity of an

object’s surface, are long established and highly efficient, see
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e.g. [1]. In fact, the integrals of mean and Gaussian curvature

are two of the four intrinsic volumes of any three dimen-

sional non-empty convex set, and can be extended to a very

general class of objects [2, chap. 14].

Yet, such integral measures do not suffice for applica-

tions such as object segmentation [3–5] or recognition [6],

where local curvature measurements are required. For sur-

face meshes, i.e., polygon meshes describing the shape of 3D-

objects, the concept of local curvature is a widely studied

subject, see e.g. [7–10]. These algorithms use different ap-

proaches: Hamann used local bivariate quadratic approxima-

tions over the tangent plane [7], while Theisel et al. compute

curvature from the three normal vectors given on the nodes

of each triangular surface element [8].
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The present paper concerns local curvature in binary

voxel data produced e.g. by computed tomography, electron

tomography, magnetic resonance imaging or serial section-

ing techniques. We do not consider the binarization step in

the present paper, but will rather assume that the data is

given in a 0/1-representation, where voxels with value 0 will

mark the background locations. Such situations occur fre-

quently. For example, in materials science applications, the

volume fractions of the material constituents are sometimes

known a priori. Thus, datasets can be preprocessed to repre-

sent the correct volume fraction of the material. Then, one

possible way to compute local curvature would be to con-

struct surface meshes via algorithms such as marching cubes

[11] or the wrapper algorithm [12] and to apply one of the

aforementioned algorithms. But this route has major obsta-

cles: Surface meshes generated from voxel data are often

large and subsequent mesh simplification is necessary (e.g.

[13]). Such a simplification reduces the amount of data, but

can lead to a loss of structural details. Furthermore, local

curvature measures on the surfaces in such binary data en-

able curvature-based segmentation of pores or particles, cf.

Section 5.

Thus, it would be desirable to compute local curvature di-

rectly on voxel grids. This problem has already been stud-

ied by other authors, especially in the context of segment-

ing porous networks in snow and ice—the same application

domain as in the present paper. Brzoska, Flin and their co-

authors first proposed to fit circles to surfaces using 3D-

distance maps created using a Chamfer-metric based dis-

tance transformation [14]. There, they were able to compute

mean curvature, only, and results were noisy even on smooth

surfaces. Therefore, they studied Gaussian curvature in voxel

data in a more recent series of publications [3,4,15]. In all of

these latter publications, they use the Gauss map to com-

pute Gaussian curvature. This would require partial deriva-

tives in off-grid directions, which the authors of [3,4] de-

scribed as computationally too expensive. In order to make

the required computation of gradients more efficient, their

algorithm rotates every local tangent system of the surfaces

under study onto the image’s coordinate axes by selecting the

coordinate direction which is closest to the normal direction

in every surface point. Their approximative method was not

accurate enough for broad applicability, in our experiments,

cf. Section 4.

Furthermore, there exist a number of highly useful meth-

ods to compute curvature measures on surfaces implicitly

defined by the iso-contours of three-dimensional gray value

data. One interesting approach with very good results has

been given by Thirion and Gourdon [16]. But in their ap-

proach, they need to consider special cases due to their lo-

cal parameterization of the surface in the form f(u, v). Thus,

they have to symmetrize their equations [16]. This requires

them to consider at least one so-called “privileged direction”,

where the gradient has to be co-linear to this privileged di-

rection. In our general approach, we do not have to consider

any special cases of this kind. Another approach, which un-

like ours and Thiron and Gourdon’s does not use fundamen-

tal forms, has been proposed by Rieger et al. [17]. Instead,

their method is based on the use of the gradient structure

tensor and Knutsson’s tensor representation of orientation

[18]. Due to the latter, Rieger et al.’s approach requires spe-

cial post-processing to retrieve the signs of the principle cur-

vatures. This can be achieved either via the Hessian matrix

as in the original paper [17], or using alternative approaches

[19]. Our method does not require any such post-processing.

An experimental comparison to our method can be found in

Section 4. More recently, Coeurjolly, Lachaud and Levallois

have proposed a curvature estimator based on integral in-

variants [20]. They were able to proof multi-grid convergence

for their method and show results comparable to previous

methods on some test surfaces.

In the following, we propose a novel and accurate al-

gorithm for computing fundamental forms – and therewith

Gaussian curvature – for every point on the surface of ob-

jects discretized on a regular grid. In differential geometry,

the fundamental forms [21] are used to describe intrinsic and

extrinsic properties of surfaces. The first fundamental form

allows e.g. to compute the length of curves and the area of

a region on a surface while adding the second fundamen-

tal form allows to compute extrinsic surface properties such

as principal curvatures, as well. This paper presents an ex-

tended version of the first author’s bachelor thesis [22].

First, we introduce our method to compute the first and

second fundamental forms on a voxel grid in Section 2. We

evaluate it on various test objects in Section 4. Subsequently,

we apply our algorithm within the curvature-based segmen-

tation framework from [3,4] in Section 5 to the analysis of

real structures measured by X-ray computed tomography in

Section 6.

2. Discrete fundamental forms

All algorithms described in the present paper have been

developed for discrete three dimensional data. That is, for

data given in form of a binary input image f : Z
3 → {0, 1},

where 0 indicates background, whereas the surfaces of in-

terest are given by the boundary of the foreground—which

corresponds to the set of voxels with value 1. Note that all re-

sults can be transferred to label images with values in N in a

straightforward manner.

But first, we will review the theoretical background in a

continuous setting. For a comprehensive introduction to the

field of differential geometry, we refer to the monographs by

do Carmo [21] and by Kreyszig [23]. We consider a regular

surface S (see e.g. [21, p. 52]) in three dimensional Euclidean

space defined by a mapping X : R
2 → R

3. Thus, X maps any

point (u, v) ∈ S to a point X(u, v) ∈ R
3. By p = (u, v) ∈ S we

will denote some point on that surface which corresponds to

a point (x, y, z) = X(u, v) ∈ R
3. Furthermore, we will write Xu

and Xv for the partial derivatives of the surface in directions

u and v, respectively, and we will use notations such as Xuv

for second partial derivatives, analogously.

2.1. First fundamental form

The first fundamental form enables local measurements

on a surface without referring to the surrounding space R
3.

For example, the length of a curve on a surface, the angle be-

tween two curves on a surface and the surface area of a re-

gion on a surface can be determined.

Definition 1 (first fundamental form [21, p. 92]). Let S be a

regular surface. Thus, a tangent plane Tp(S) exists in every
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